当前位置: X-MOL 学术High Energy Density Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A temperature profile diagnostic for radiation waves on OMEGA-60
High Energy Density Physics ( IF 1.6 ) Pub Date : 2021-05-17 , DOI: 10.1016/j.hedp.2021.100939
H.M. Johns , C.L. Fryer , S.R. Wood , C.J. Fontes , P.M. Kozlowski , N.E. Lanier , A. Liao , T.S. Perry , J.W. Morton , C.R.D. Brown , D.W. Schmidt , T. Cardenas , T.J. Urbatsch , P. Hakel , J. Colgan , S. Coffing , J. Cowan , D. Capelli , L.A. Goodwin , T.E. Quintana , C. Hamilton , F. Fierro , C. Wilson , R.B. Randolph , P. Donovan , T. Sedillo , R. Gonzales , M.E. Sherrill , M.R. Douglas , W.J. Garbett , J.D. Hager , J. Kline

Predicting and matching radiation wave propagation with computational models has proven difficult. Information provided by experiments studying radiation flow has been limited when only radiation breakout is measured. We have developed the COAX (co-axial) diagnostic platform to provide spatial temperature profiles of a radiation wave through low density foams as a more detailed constraint for simulations. COAX uses a standard, laser-driven OMEGA-60 halfraum to drive radiation down a titanium-laden silicon oxide foam. Point-projection X-ray absorption spectroscopy perpendicular to the radiation flow measures the spatial profile of titanium ionization. The spectroscopic measurement utilizes a broadband capsule backlighter. Imaging and streak spectroscopy are used to characterize the size and spectrum of this source. Radiography provides an additional constraint by capturing the developing shock as the radiation flow becomes subsonic. The DANTE diagnostic is used to measure the halfraum temperature. We provide a spectroscopic analysis of COAX data to determine temperature, and we describe experimental sources of uncertainty. The temperature is obtained by comparison to multi-temperature synthetic spectra post-processed from radiation-hydrodynamics simulations. Quantitative comparison between data and synthetic spectra generated from temperature profiles at relevant simulation times enable determination of a peak temperature of 114 ± 8 eV at 265 ± 22.4 μm from the halfraum. This represents an improvement over the temperature uncertainties of previous radiation flow experiments. Further refinements to the spectroscopic analysis could achieve ± 4 eV. The combination between space-resolved spectroscopy and radiography enables us to determine the distance from the halfraum of both the radiation front and the shock front at the time of measurement. For the example shown in this paper the radiation front position is 600–630 μm at 3.43 ± 0.16 ns and the shock front position is 633 μm at 3.3 ± 0.24 ns.



中文翻译:

OMEGA-60上辐射波的温度曲线诊断

用计算模型预测和匹配辐射波传播已被证明是困难的。当仅测量辐射破裂时,由研究辐射流的实验提供的信息是有限的。我们已经开发了COAX(同轴)诊断平台,以提供通过低密度泡沫的辐射波的空间温度曲线,作为模拟的更详细约束。COAX使用标准的激光驱动的OMEGA-60半朗姆酒将辐射向下推动到充满钛的氧化硅泡沫材料上。垂直于辐射流的点投影X射线吸收光谱法可测量钛离子化的空间分布。光谱测量利用宽带胶囊背光源。成像和条纹光谱用于表征该来源的大小和光谱。射线照相术通过捕获随着辐射流变为亚音速而产生的冲击,从而提供了附加的约束条件。DANTE诊断程序用于测量半血清温度。我们提供了COAX数据的光谱分析以确定温度,并描述了不确定性的实验来源。通过与通过辐射流体动力学模拟后处理的多温度合成光谱进行比较来获得温度。在相关模拟时间从温度曲线生成的数据和合成光谱之间进行定量比较,可以确定114的峰值温度 并且我们描述了不确定性的实验来源。通过与通过辐射流体动力学模拟后处理的多温度合成光谱进行比较来获得温度。在相关模拟时间从温度曲线生成的数据和合成光谱之间进行定量比较,可以确定114的峰值温度 并且我们描述了不确定性的实验来源。通过与通过辐射流体动力学模拟后处理的多温度合成光谱进行比较来获得温度。在相关模拟时间从温度曲线生成的数据和合成光谱之间进行定量比较,可以确定114的峰值温度 ± 265时为8 eV ± 22.4 μ半场的米。这代表了对先前辐射流实验的温度不确定性的改进。可以进一步完善光谱分析± 4 eV。空间分辨光谱法和射线照相法的结合使我们能够确定在测量时距辐射前沿和激波前沿的半朗姆值的距离。对于本文所示的示例,辐射前位置为600–630 μm在3.43 ± 0.16 ns,电击前位置为633 μm在3.3 ± 0.24 ns。

更新日期:2021-05-25
down
wechat
bug