当前位置: X-MOL 学术Nat. Ecol. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards an ecosystem model of infectious disease
Nature Ecology & Evolution ( IF 13.9 ) Pub Date : 2021-05-17 , DOI: 10.1038/s41559-021-01454-8
James M Hassell 1, 2 , Tim Newbold 3 , Andrew P Dobson 4, 5 , Yvonne-Marie Linton 6, 7, 8 , Lydia H V Franklinos 3 , Dawn Zimmerman 1, 2 , Katrina M Pagenkopp Lohan 9
Affiliation  

Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens—and the best ways to manage this—remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics.



中文翻译:

迈向传染病的生态系统模型

人类社会与自然环境之间日益密切的联系正在推动新型病原体的出现,对人类和动物都造成毁灭性的后果。在出现之前,这些病原体存在于复杂的生态系统中,其特点是寄生虫、它们的宿主和环境之间的营养相互作用。预测对这些生态系统的干扰如何使人和动物面临新出现的病原体的风险——以及管理这种情况的最佳方法——仍然是一项重大挑战。预测系统生态模型是重建生态系统功能的有力工具,但尚未考虑用于模拟传染病。这部分源于一种错误的倾向,即忘记了病原体在构建系统生态学家所青睐的自由生活物种的丰度和相互作用中所起的作用。在这里,我们探讨了如何在景观尺度上开发和应用这些更完整的系统生态模型将极大地增强我们对寄生虫、病原体和环境之间相互作用的理解,将人畜共患病置于生态环境中,同时确定关键变量并简化假设潜在的病原体宿主转换和动物对人类的溢出风险。除了改变我们对疾病生态学的理解外,这还将使我们能够更好地引导资源,为未来的大流行做准备。我们探索如何在景观尺度上开发和应用这些更完整的系统生态模型将大大增强我们对寄生虫、病原体和环境之间相互作用的理解,将人畜共患病置于生态环境中,同时确定关键变量并简化病原体的假设宿主转换和动物对人的溢出风险。除了改变我们对疾病生态学的理解外,这还将使我们能够更好地引导资源,为未来的大流行做准备。我们探索如何在景观尺度上开发和应用这些更完整的系统生态模型将大大增强我们对寄生虫、病原体和环境之间相互作用的理解,将人畜共患病置于生态环境中,同时确定关键变量并简化病原体的假设宿主转换和动物对人的溢出风险。除了改变我们对疾病生态学的理解外,这还将使我们能够更好地引导资源,为未来的大流行做准备。同时确定关键变量并简化导致病原体宿主转换和动物-人类溢出风险的假设。除了改变我们对疾病生态学的理解外,这还将使我们能够更好地引导资源,为未来的大流行做准备。同时确定关键变量并简化导致病原体宿主转换和动物-人类溢出风险的假设。除了改变我们对疾病生态学的理解外,这还将使我们能够更好地引导资源,为未来的大流行做准备。

更新日期:2021-05-17
down
wechat
bug