当前位置: X-MOL 学术EPJ Quantum Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles
EPJ Quantum Technology ( IF 5.8 ) Pub Date : 2021-05-17 , DOI: 10.1140/epjqt/s40507-021-00100-3
Constantin Dalyac 1, 2 , Loïc Henriet 1 , Emmanuel Jeandel 3 , Wolfgang Lechner 4, 5 , Simon Perdrix 3 , Marc Porcheron 6 , Margarita Veshchezerova 3, 6
Affiliation  

In order to qualify quantum algorithms for industrial NP-Hard problems, comparing them to available polynomial approximate classical algorithms and not only to exact exponential ones is necessary. This is a great challenge as, in many cases, bounds on the reachable approximation ratios exist according to some highly-trusted conjectures of Complexity Theory. An interesting setup for such qualification is thus to focus on particular instances of these problems known to be “less difficult” than the worst-case ones and for which the above bounds can be outperformed: quantum algorithms should perform at least as well as the conventional approximate ones on these instances, up to very large sizes. We present a case study of such a protocol for two industrial problems drawn from the strongly developing field of smart-charging of electric vehicles. Tailored implementations of the Quantum Approximate Optimization Algorithm (QAOA) have been developed for both problems, and tested numerically with classical resources either by emulation of Pasqal’s Rydberg atom based quantum device or using Atos Quantum Learning Machine. In both cases, quantum algorithms exhibit the same approximation ratios as conventional approximation algorithms or improve them. These are very encouraging results, although still for instances of limited size as allowed by studies on classical computing resources. The next step will be to confirm them on larger instances, on actual devices, and for more complex versions of the problems addressed.

中文翻译:

用于硬工业优化问题的限定量子方法。电动汽车智能充电领域案例研究

为了验证工业 NP-Hard 问题的量子算法,需要将它们与可用的多项式近似经典算法进行比较,而不仅仅是与精确的指数算法进行比较。这是一个巨大的挑战,因为在许多情况下,根据复杂性理论的一些高度可信的猜想,存在可达到的近似比的界限。因此,这种限定的一个有趣设置是关注这些问题的特定实例,这些实例已知比最坏的情况“更难”,并且可以超越上述界限:量子算法的性能至少应与传统算法一样好在这些实例上的近似值,直到非常大的尺寸。我们针对来自电动汽车智能充电的强劲发展领域的两个工业问题提出了此类协议的案例研究。已经针对这两个问题开发了量子近似优化算法 (QAOA) 的定制实现,并通过模拟 Pasqal 的基于里德堡原子的量子设备或使用 Atos 量子学习机对经典资源进行了数值测试。在这两种情况下,量子算法都表现出与传统逼近算法相同的逼近率或对其进行改进。这些都是非常令人鼓舞的结果,尽管对于经典计算资源的研究所允许的大小有限的实例。下一步将是在更大的实例、实际设备以及所解决问题的更复杂版本上确认它们。并通过模拟 Pasqal 的基于里德堡原子的量子设备或使用 Atos 量子学习机对经典资源进行了数值测试。在这两种情况下,量子算法都表现出与传统逼近算法相同的逼近率或对其进行改进。这些都是非常令人鼓舞的结果,尽管对于经典计算资源的研究所允许的大小有限的实例。下一步将是在更大的实例、实际设备以及所解决问题的更复杂版本上确认它们。并通过模拟 Pasqal 的基于里德堡原子的量子设备或使用 Atos 量子学习机对经典资源进行了数值测试。在这两种情况下,量子算法都表现出与传统逼近算法相同的逼近率或对其进行改进。这些都是非常令人鼓舞的结果,尽管对于经典计算资源的研究所允许的大小有限的实例。下一步将是在更大的实例、实际设备以及所解决问题的更复杂版本上确认它们。尽管仍然适用于经典计算资源研究允许的有限大小的实例。下一步将是在更大的实例、实际设备以及所解决问题的更复杂版本上确认它们。尽管仍然适用于经典计算资源研究允许的有限大小的实例。下一步将是在更大的实例、实际设备以及所解决问题的更复杂版本上确认它们。
更新日期:2021-05-17
down
wechat
bug