当前位置: X-MOL 学术IETE Tech. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Non-Uniform Doping on the Reliability of Double Gate JunctionLess Transistor: A Numerical Investigation
IETE Technical Review ( IF 2.5 ) Pub Date : 2021-05-16 , DOI: 10.1080/02564602.2021.1912659
Vandana Kumari 1 , Mridula Gupta 2 , Manoj Saxena 3
Affiliation  

This paper systematically studies the reliability of non-uniformly doped Double Gate Junctionless transistor using ATLAS TCAD simulation. The reliability analysis is mainly based on the understanding of Band-To-Band-Tunneling (BTBT) current, lattice temperature, drain conductance and gate leakage current. Presented results show that higher source/drain work-function is beneficial in reducing tunneling current (1 × 10−9 A to 4 × 10−11 A @ Vgs = −1 V) but eventually it will also degrade electrostatic current significantly (∼3 order). Source/Drain length has also been varied during optimization and it has been observed that, shorter source drain extension region degrades the device reliability (i.e. higher magnitude of tunneling current (7 × 10−9 A @ Vgs =−1 V for LS = LD = 5 nm)). Different doping profile considered for performance assessment are: uniform, step (i.e. low–low–high and high–high–low etc.) and different configurations of gaussian doping profile. Minimum variation in tunneling current with negative gate bias, i.e. ∼ 1 order has been seen from the device having uniform doping 1019 cm−3 but at the cost of significantly high off-state current (2 × 10−9 A @ Vgs = 0 V) and tunneling current (2 × 10−8 A @ Vgs = −1 V). Thus, instead of using uniform doping, step type profile (i.e. Case A) is the better choice which results in lower tunneling current (1 × 10−9 A @ Vgs = −1 V), moderate lattice temperature (326) and better Ion/Ioff ratio (243 × 108). Device lattice temperature has also been controlled by using step A doping profile even at the higher operating temperatures due to lower Self Heating Effect.



中文翻译:

非均匀掺杂对双栅极无结晶体管可靠性的影响:数值研究

本文利用ATLAS TCAD仿真系统研究了非均匀掺杂双栅无结晶体管的可靠性。可靠性分析主要基于对带对带隧道(BTBT)电流、晶格温度、漏极电导和栅极漏电流的理解。呈现的结果表明,较高的源极/漏极功函数有利于降低隧道电流(1 × 10 -9  A 至 4 × 10 -11  A @ V gs  = −1 V),但最终它也会显着降低静电电流(~ 3阶)。源极/漏极长度在优化过程中也发生了变化,并且已经观察到,较短的源极漏极扩展区会降低器件的可靠性(更高幅度的隧道电流(7 × 10 −9  A @ V gs  = −1 V for L S  =  L D  = 5 nm))。性能评估考虑的不同掺杂分布是:均匀、阶梯(低-低-高和高-高-低等和高斯掺杂分布的不同配置。从具有均匀掺杂 10 19  cm -3的器件中可以看出负栅极偏置下隧道电流的最小变化,∼ 1 阶,但代价是显着高的断态电流(2 × 10 -9  A @ V gs = 0 V) 和隧道电流 (2 × 10 −8  A @ V gs  = −1 V)。因此,不是使用均匀掺杂,阶梯型分布(案例 A)是更好的选择,它会导致较低的隧道电流(1 × 10 -9  A @ V gs  = -1 V)、适中的晶格温度 (326) 和更好的效果I on / I off比率 (243 × 10 8 )。由于较低的自热效应,即使在较高的工作温度下,也可以通过使用步骤 A 掺杂分布来控制器件晶格温度。

更新日期:2021-05-16
down
wechat
bug