当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic structures and physical properties of Mg, C, and S doped g-GaN
Micro and Nanostructures ( IF 3.1 ) Pub Date : 2021-05-16 , DOI: 10.1016/j.spmi.2021.106930
Pengfei Shen , Enling Li , Lin Zhang , Hongyuan Zhao , Zhen Cui , Deming Ma

Doping can provide hole and electron carriers into g-GaN materials to enhance conductivity and improve photoemission performance of g-GaN-based devices. In this work, we propose 9 × 9 × 1 g-GaN supercell and C, Mg, and S doped g-GaN systems (C and Mg substituting for Ga (CGa and MgGa systems), C and S substituting for N (CN and SN systems)) with different concentrations, and investigate their structural, electronic, electrical, and optical properties in the framework of first-principles calculations. N-type doping is achieved in the CGa and SN g-GaN systems, and p-type doping is achieved in the MgGa and CN g-GaN systems. C substituting for Ga is easier than C substituting for N, and the CGa g-GaN systems are more stability than the CN g-GaN systems. At the ultraviolet of the absorption spectra, the peaks of the doped g-GaN systems blue-shift or red-shift relative to the intrinsic g-GaN, and there are sharp peaks of the doped CGa and SN g-GaN systems at visible range. The work function and the carrier mobility have been modulated by doping and the electrical properties of g-GaN can be tuned effectively, which also promising significant applications in the design of 2D microelectronic devices and the integrated circuit.



中文翻译:

掺杂了Mg,C和S的g-GaN的电子结构和物理性质

掺杂可以在g-GaN材料中提供空穴和电子载流子,以增强导电性并改善基于g-GaN的器件的光发射性能。在这项工作中,我们提出了9×9×1 g-GaN超级电池以及C,Mg和S掺杂的g-GaN系统(用C和Mg代替Ga(C Ga和Mg Ga系统),用C和S代替N( C N和S N系统)),并在第一性原理计算的框架内研究它们的结构,电子,电和光学性质。在C Ga和S N g-GaN系统中实现N型掺杂,在Mg Ga和C中实现p型掺杂N g-GaN系统。C取代Ga的C比C取代N的容易,并且C Ga g-GaN系统比C N g-GaN系统更稳定。在吸收光谱的紫外线处,掺杂的g-GaN系统的峰相对于本征g-GaN发生蓝移或红移,并且在以下位置存在掺杂的C Ga和S N g-GaN系统的尖峰。可见范围。功函数和载流子迁移率已经通过掺杂进行了调制,并且可以有效地调节g-GaN的电性能,这也有望在2D微电子器件和集成电路的设计中获得重要的应用。

更新日期:2021-05-22
down
wechat
bug