当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of channel geometry and porous coverage on flame acceleration in hydrogen–air mixture
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2021-05-16 , DOI: 10.1016/j.psep.2021.04.038
G.Y. Bivol , S.V. Golovastov , V.V. Golub

Flame propagation in a hydrogen–air mixture in the presence of porous materials was investigated experimentally in channels with different dimensions and cross–sections. In this study, experiments were performed in a rectangular channel with one or two walls covered with porous material to study flame propagation in stoichiometric hydrogen–air mixtures at room temperature and atmospheric pressure. Depending on the channel configuration, the porous coating of the internal walls ranged from 1/4 to 1/2 of the channel area. Four types of polyurethane foam with a number of pores per inch (PPI) ranging from 10 to 80 were used to cover the channel walls. Flame propagation was visualized using a Schlieren device and high-speed camera. The largest flame acceleration in the porous channel relative to the solid channel was observed in the 20 × 20 mm channel. The ratio of the velocities in the porous channel to the velocity in the solid channels was 6–7 for the porous material with the largest (2.5 mm) pores. In the case of a 10 × 10 mm channel, the flame velocity in the porous channel was higher than the flame velocity in the solid channel after 350 mm only when using porous coatings with 2.5 mm and 1.3 mm pores. When using a porous coating with smaller pores the flame velocity was lower than in the solid channel. Schlieren images show different stages of flame propagation from a turbulent flame to a supersonic flame with shock waves.



中文翻译:

通道几何形状和多孔覆盖对氢-空气混合物中火焰加速的影响

在具有不同尺寸和横截面的通道中,对存在多孔材料的氢-空气混合物中的火焰传播进行了实验研究。在这项研究中,实验是在一个矩形通道中进行的,该通道的一两个壁覆盖有多孔材料,以研究在室温和大气压下化学计量氢-空气混合物中火焰的传播。取决于通道构造,内壁的多孔涂层的范围为通道面积的1/4至1/2。每英寸孔隙数(PPI)在10到80之间的四种类型的聚氨酯泡沫被用来覆盖通道壁。使用Schlieren设备和高速摄像头可以看到火焰传播。相对于固体通道,在20年代观察到了最大的火焰加速 ×  20 毫米通道。对于具有最大 孔(2.5毫米)的多孔材料,多孔通道中的速度与固体通道中的速度之比为6–7 。在10  ×  10  mm通道的情况下, 仅当使用具有2.5  mm和1.3  mm孔的多孔涂层时,多孔通道中的火焰速度才在350 mm之后高于固体通道中的火焰速度。当使用具有较小孔的多孔涂层时,火焰速度低于固体通道中的火焰速度。Schlieren图像显示了火焰从湍流火焰传播到具有冲击波的超音速火焰的不同阶段。

更新日期:2021-05-17
down
wechat
bug