当前位置: X-MOL 学术ZAMM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-diffusive convection in a porous complex-shaped cavity suspended by nano-encapsulated phase change materials
ZAMM - Journal of Applied Mathematics and Mechanics ( IF 2.3 ) Pub Date : 2021-05-14 , DOI: 10.1002/zamm.202000376
Abdelraheem M. Aly 1, 2 , Noura Alsedais 3
Affiliation  

This paper simulates a double-diffusive convection of suspended nano-encapsulated phase change materials (NEPCM) embedded inside a porous complex-shaped cavity. The ISPH method is employed to handle the controlling equations in dimensionless form. The complex-shaped cavity consists of a circular cylinder mounted vertically on two rectangle shapes. Variable-length on the left wall is maintained at a temperature and concentration higher than the on the other side of the wall. Phase changes in encapsulated nanoparticles were assessed by the heat capacity of the core and shell layers. The simulations carried out were shown in terms of the velocity field, temperature, concentration, and melting-solidification zones below the effects of the variable hot source L h ( 0.4 L h 2 ) , the fusion temperature θ f ( 0.05 θ f 0.95 ) and the Stefan parameter S t e ( 0.2 S t e 0.9 ) . The main finding indicated that the phase change zone follows the hot source within the cavity. The expansions of the partial hot length and the fusion temperature alter the intensity and location of the phase change zone. An augmentation in the Stefan number lowers the intensity of the phase change zone.

中文翻译:

纳米封装相变材料悬浮的多孔复杂形状腔中的双扩散对流

本文模拟了嵌入多孔复杂形状腔内的悬浮纳米封装相变材料 (NEPCM) 的双扩散对流。ISPH 方法用于处理无量纲形式的控制方程。复杂形状的腔体由垂直安装在两个矩形上的圆柱体组成。左侧壁上的可变长度保持在高于壁另一侧的温度和浓度。通过核层和壳层的热容量评估封装纳米颗粒的相变。进行的模拟显示了速度场、温度、浓度和可变热源影响下的熔化-凝固区 H ( 0.4 H 2 ) , 熔化温度 θ F ( 0.05 θ F 0.95 ) 和 Stefan 参数 电子 ( 0.2 电子 0.9 ) . 主要发现表明相变区跟随腔内的热源。部分热长度和熔化温度的膨胀改变了相变区的强度和位置。Stefan 数的增加降低了相变区的强度。
更新日期:2021-05-14
down
wechat
bug