当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards the control of blade cavitation in a waterjet pump with inlet guide vanes: Passive control by obstacles
Ocean Engineering ( IF 4.6 ) Pub Date : 2021-05-14 , DOI: 10.1016/j.oceaneng.2021.108820
Guoshou Zhao , Linlin Cao , Bangxiang Che , Rui Wu , Shuai Yang , Dazhuan Wu

The blade cavitation in a waterjet pump presents highly dynamic behaviors under the inflow non-uniformities and unsteadiness. This work designs a pair of tandem obstacles attached on the blade suction surface to control blade cavitation within the waterjet pump. The unsteady simulations and experimental observation of the cavitating flow in a water tunnel are jointly carried out to study the control mechanism and control effects of obstacles. It is observed that, the blade leading edge regimes before the obstacle are nearly free of cavities at the incipient, moderate developing and fully developed cavitation stages whereas the shear cavitation is triggered after each obstacle. The cavitation control mechanism of obstacles is substantially attributable to the raised absolute pressure and the flow deceleration imposed by the adverse pressure gradient (APG) alternations. In particular, the position-shifted cavitation effectively weakens the interactions of inlet guide vanes (IGVs) wake and blade cavitation and hence to avoid the dynamic loading impingement around the leading edge regimes although a 5.6% hydraulic efficiency reduction is introduced. As a result, the root mean square (RMS) of 10–300 Hz of the obstacle thrust spectra is degraded with a pronounced amount. In the following work, the geometries and positions of obstacles will be further optimized to improve the cavitation control effects.



中文翻译:

在带有入口导向叶片的喷水泵中控制叶片气蚀的方法:障碍物的被动控制

在进水不均匀和不稳定的情况下,水刀泵中的叶片气穴现象表现出高度的动态行为。这项工作设计了一对串联的障碍物,这些障碍物附着在叶片吸力表面上,以控制喷水泵内的叶片气蚀现象。结合水洞中空化流的非定常模拟和实验观察,研究了障碍物的控制机理和控制效果。观察到,在开始,中等发展和充分发展的气蚀阶段,障碍物之前的叶片前缘状态几乎没有空穴,而在每个障碍物之后触发了剪切气蚀。障碍物的空化控制机制基本上可归因于绝对压力的升高和由逆压力梯度(APG)交替施加的流动减速。尤其是,位置偏移的气蚀有效地削弱了进口导向叶片(IGV)尾流和叶片气蚀的相互作用,因此尽管引入了5.6%的液压效率降低,却避免了前缘区域周围的动态载荷冲击。结果,障碍推力谱的10-300 Hz的均方根(RMS)显着降低。在以下工作中,将进一步优化障碍物的几何形状和位置,以改善空化控制效果。尽管引入了5.6%的液压效率降低,但位置偏移的气蚀有效地削弱了进口导向叶片(IGV)尾流和叶片气蚀的相互作用,从而避免了前缘区域周围的动态载荷撞击。结果,障碍推力谱的10-300 Hz的均方根(RMS)显着降低。在以下工作中,将进一步优化障碍物的几何形状和位置,以改善空化控制效果。尽管引入了5.6%的液压效率降低,但位置偏移的气蚀有效地削弱了进口导向叶片(IGV)尾流和叶片气蚀的相互作用,从而避免了前缘区域周围的动态载荷撞击。结果,障碍推力谱的10-300 Hz的均方根(RMS)显着降低。在以下工作中,将进一步优化障碍物的几何形状和位置,以改善空化控制效果。

更新日期:2021-05-14
down
wechat
bug