当前位置: X-MOL 学术Atmosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China
Atmosphere ( IF 2.5 ) Pub Date : 2021-05-12 , DOI: 10.3390/atmos12050619
Shiyin Yao , Wei Wei , Shuiyuan Cheng , Yuan Niu , Panbo Guan

The air quality of Handan, a typical industrial city in China, has been significantly improved through atmospheric pollution control, except for ozone (O3) pollution. We found that, in summer, emissions of anthropogenic volatile organic compounds (VOCs) and NOx decreased yearly in Handan, but the O3 concentration significantly declined yearly during 2013–2015, whereas it experienced worsening O3 pollution after 2015. Therefore, we used the Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system to simulate the influence of the meteorological conditions and emission changes in Handan during the typical period (June) of O3 pollution in 2013–2018. For benchmarked June 2013, the results showed that the reduction of the O3 concentration in June of 2014–2016 was mainly caused by emission reduction, while in June of 2017–2018, the combined effect of changes in emissions and meteorological conditions led to aggravated O3 pollution. Sensitivity analysis indicated that combined VOCs and NOx emission controls would effectively reduce incremental O3 formation when the abatement ratio of VOCs/NOx should be no less than 0.84, and we found that VOCs reduction would continusouly bring about O3 decreases under various NOx reductions, but its positive sensitivity to O3 would become smaller with NOx reduction. However, the positive influence of NOx reduction on O3 would happen until NOx reduction exceeding 45–60%. The findings will be helpful in formulating emission control strategies for coping with O3 pollution in an industrial city.
更新日期:2021-05-12
down
wechat
bug