当前位置: X-MOL 学术Phys. Chem. Earth Parts A/B/C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation
Physics and Chemistry of the Earth, Parts A/B/C ( IF 3.7 ) Pub Date : 2021-05-12 , DOI: 10.1016/j.pce.2021.103026
Ganquan Mao , Meng Wang , Junguo Liu , Zifeng Wang , Kai Wang , Ying Meng , Rui Zhong , Hong Wang , Yuxin Li

Accurate and efficient runoff simulations are crucial for water management in basins. Rainfall-runoff simulation approaches range between physical, conceptual, and data-driven models. With the recent development of machine-learning techniques, machine learning methods have been widely applied in the field of hydrology. Existing studies show that such methods can achieve comparable or even better performances than conventional hydrological models in runoff simulation. In particular, long short-term memory (LSTM) neural networks are able to overcome the shortcomings of traditional neural network methods in handling time series data. However, the impacts of the time memory on rainfall-runoff simulation are rarely studied. In this study, hysteresis effects in hydrology were investigated and the performances of machine learning methods and traditional hydrological models were assessed. The results show that the ANN model is more suitable for monthly scale simulation, while the LSTM model performs better at daily scale. Hydrological hysteresis is important for runoff simulations when using machine learning methods, especially at daily scale. By considering hysteresis in the simulation, the RMSE is significantly improved by 27% (21%) for LSTM (ANN). In addition, LSTM is more robust for time series handling, while the ANN is easier to be overfitted due to the limitation of neural network structure. This study provides new insights into the potential use of machine learning in hydrological simulations.



中文翻译:

人工神经网络与长时记忆网络在降雨径流模拟中的综合比较

准确而有效的径流模拟对于流域的水管理至关重要。降雨径流模拟方法的范围介于物理模型,概念模型和数据驱动模型之间。随着机器学习技术的最新发展,机器学习方法已广泛应用于水文学领域。现有研究表明,在径流模拟中,这种方法可比常规水文模型获得甚至更好的性能。特别是,长短期记忆(LSTM)神经网络能够克服传统神经网络方法在处理时间序列数据方面的缺点。但是,很少研究时间记忆对降雨径流模拟的影响。在这项研究中,研究了水文中的磁滞效应,并评估了机器学习方法和传统水文模型的性能。结果表明,ANN模型更适合于月度规模的模拟,而LSTM模型在日规模上表现更好。当使用机器学习方法时,水文滞后对于径流模拟非常重要,尤其是在日常规模中。通过在仿真中考虑滞后,对于LSTM(ANN),RMSE显着提高了27%(21%)。此外,由于神经网络结构的限制,LSTM在时间序列处理方面更强大,而ANN更容易过拟合。这项研究为机器学习在水文模拟中的潜在用途提供了新的见解。结果表明,ANN模型更适合于月度规模的模拟,而LSTM模型在日规模上表现更好。当使用机器学习方法时,水文滞后对于径流模拟非常重要,尤其是在日常规模中。通过在仿真中考虑滞后,对于LSTM(ANN),RMSE显着提高了27%(21%)。此外,由于神经网络结构的限制,LSTM在时间序列处理方面更强大,而ANN更容易过拟合。这项研究为机器学习在水文模拟中的潜在用途提供了新的见解。结果表明,ANN模型更适合于月度规模的模拟,而LSTM模型在日规模上表现更好。当使用机器学习方法时,水文滞后对于径流模拟非常重要,尤其是在日常规模中。通过在仿真中考虑滞后,LSTM(ANN)的RMSE显着提高了27%(21%)。此外,由于神经网络结构的限制,LSTM在时间序列处理方面更强大,而ANN更容易过拟合。这项研究为机器学习在水文模拟中的潜在用途提供了新的见解。通过在仿真中考虑滞后,对于LSTM(ANN),RMSE显着提高了27%(21%)。此外,由于神经网络结构的限制,LSTM在时间序列处理方面更强大,而ANN更容易过拟合。这项研究为机器学习在水文模拟中的潜在用途提供了新的见解。通过在仿真中考虑滞后,LSTM(ANN)的RMSE显着提高了27%(21%)。此外,由于神经网络结构的限制,LSTM在时间序列处理方面更强大,而ANN更容易过拟合。这项研究为机器学习在水文模拟中的潜在用途提供了新的见解。

更新日期:2021-05-19
down
wechat
bug