当前位置: X-MOL 学术Meas. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine vision-based relative-angle measurement system between circular holes
Measurement and Control ( IF 2 ) Pub Date : 2021-05-12 , DOI: 10.1177/00202940211013059
Chao-Ching Ho 1 , Rong-Hua Zhang 1
Affiliation  

In this study, the machine-vision technique is employed to measure the angle between two circular holes for the derailleur parts of a bicycle. A delta robot equipped with a motorized zoom lens is constructed as an automatic measurement device. In this way, we can detect the normal vectors of circular holes with different positions and sizes by using only one camera. By calculating the plane normal vectors of two circular holes within the camera coordinate system and performing the cross-product operation, the angle between the two circular holes is obtained. Simulation experiments reveal that the measurement method is influenced by the projection eccentricity error, and the error can be reduced by increasing the focal length and employing the virtual-center alignment method. The results show that the average error for measuring the derailleur parts is approximately 0.061°, and the standard deviation is 0.112°. Experimental analysis indicates that while the magnification of the image is larger, the average error of the measurement result is reduced, and the standard deviation is reduced as well. When the magnification is 0.4×, the measurement average error is 0.04°, and standard deviation is 0.101°. When the distance between the center of the circle and the center of the image is increased, the error in the angle calculation is also increased. A significant improvement is obtained by setting the fitting center position to the optical central position, which omits the influence of the error amplification caused by the distance of the circular hole from the optical axis.



中文翻译:

基于机器视觉的圆孔间相对角度测量系统

在这项研究中,采用机器视觉技术来测量自行车拨链器部件的两个圆孔之间的角度。配备有电动变焦镜头的三角洲机器人被构造为自动测量设备。这样,仅使用一台摄像机就可以检测出不同位置和大小的圆孔的法向矢量。通过计算相机坐标系内两个圆形孔的平面法线向量并执行叉积运算,可以获得两个圆形孔之间的角度。仿真实验表明,测量方法受投影偏心误差的影响,可以通过增加焦距和采用虚中心对准方法来减小误差。结果表明,拨链器部件的平均测量误差约为0.061°,标准偏差为0.112°。实验分析表明,当图像放大倍率较大时,测量结果的平均误差减小,标准偏差也减小。放大倍率为0.4倍时,测量平均误差为0.04°,标准偏差为0.101°。当圆心与图像中心之间的距离增加时,角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。标准偏差为0.112°。实验分析表明,当图像放大倍率较大时,测量结果的平均误差减小,标准偏差也减小。放大倍率为0.4倍时,测量平均误差为0.04°,标准偏差为0.101°。当圆心与图像中心之间的距离增加时,角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。标准偏差为0.112°。实验分析表明,当图像放大倍率较大时,测量结果的平均误差减小,标准偏差也减小。放大倍率为0.4倍时,测量平均误差为0.04°,标准偏差为0.101°。当圆心与图像中心之间的距离增加时,角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。测量结果的平均误差减小,标准偏差也减小。放大倍率为0.4倍时,测量平均误差为0.04°,标准偏差为0.101°。当圆心与图像中心之间的距离增加时,角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。测量结果的平均误差减小,标准偏差也减小。放大倍率为0.4倍时,测量平均误差为0.04°,标准偏差为0.101°。当圆心与图像中心之间的距离增加时,角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。角度计算中的误差也会增加。通过将装配中心位置设置为光学中心位置,可以获得显着的改进,它消除了由于圆孔距光轴的距离而引起的误差放大的影响。

更新日期:2021-05-12
down
wechat
bug