当前位置: X-MOL 学术J. Hydrodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New fluid kinematics
Journal of Hydrodynamics ( IF 3.4 ) Pub Date : 2021-05-11 , DOI: 10.1007/s42241-021-0037-5
Chaoqun Liu

Fluid kinematics describes the fluid motion without consideration of any force. Classical fluid kinematics adopts Helmholtz velocity decomposition, which is equivalent to Cauchy-Stokes (CS) velocity gradient tensor decomposition. CS decomposes the velocity gradient tensor into a strain-rate (symmetric) tensor and a vorticity (anti-symmetric) tensor. However, several questions arise: (1) since vorticity cannot represent fluid rotation, the vorticity tensor is a mixture of vorticity shear and rigid rotation, (2) since the strain-rate tensor cannot represent fluid shear, the strain-rate tensor is a mixture of stretching and shear, (3) the stretching and shear in the CS decomposition are dependent on the selection of coordinate system and are therefore not Galilean invariant. On the other hand, Liutex is a new physical quantity to represent the rigid fluid rotation and a principal coordinate system can be set up based on Liutex. A principal decomposition of the velocity gradient tensor, or the rotation-stretching-shear decomposition, can be easily carried out in the principal coordinate system with a clear physical meaning, which represents the rigid rotation, stretching (compression) and shear (symmetric and anti-symmetric shear). In the principal decomposition, all elements in three sub-tensors are Galilean invariant and, therefore, the principal decomposition is unique, Galilean invariant and independent of coordinate system. The principal decomposition is then transformed back to the original xyz coordinate system. The Liutex-based principal decomposition creates the new fluid kinematics which is ready for building up new fluid dynamics. Since fluid kinematics is the foundation of the fluid dynamics, the new fluid kinematics could replace the classical fluid kinematics, Helmholtz or CS decomposition, and open a new gate to develop new fluid dynamics especially for vortex science and turbulence research.



中文翻译:

新的流体运动学

流体运动学描述了不考虑任何力的流体运动。古典流体运动学采用亥姆霍兹速度分解,等效于柯西斯托克斯(CS)速度梯度张量分解。CS将速度梯度张量分解为应变率(对称)张量和涡度(反对称)张量。但是,出现了几个问题:(1)由于涡度不能表示流体旋转,所以涡度张量是涡度剪切和刚性旋转的混合;(2)由于应变率张量不能表示流体剪切,因此应变率张量是(3)CS分解中的拉伸和剪切取决于坐标系的选择,因此不是伽利略不变的。另一方面,Liutex是代表刚体旋转的新物理量,可以基于Liutex建立主坐标系。速度梯度张量的主分解或旋转拉伸剪切分解可以很容易地在具有清晰物理意义的主坐标系中进行,这表示刚性旋转,拉伸(压缩)和剪切(对称和反对称)。 -对称剪切)。在主分解中,三个子张量中的所有元素都是伽利略不变,因此,主分解是唯一的,伽利略不变且独立于坐标系。然后将本金分解转换回原始 或旋转-拉伸-剪切分解,可以很容易地在具有清晰物理意义的主坐标系中进行,这表示刚性旋转,拉伸(压缩)和剪切(对称和反对称剪切)。在主分解中,三个子张量中的所有元素都是伽利略不变,因此,主分解是唯一的,伽利略不变且独立于坐标系。然后将本金分解转换回原始 或旋转-拉伸-剪切分解,可以很容易地在具有清晰物理意义的主坐标系中进行,这表示刚性旋转,拉伸(压缩)和剪切(对称和反对称剪切)。在主分解中,三个子张量中的所有元素都是伽利略不变,因此,主分解是唯一的,伽利略不变且独立于坐标系。然后将本金分解转换回原始 因此,主分解是唯一的,伽利略不变且独立于坐标系。然后将本金分解转换回原始 因此,主分解是唯一的,伽利略不变且独立于坐标系。然后将本金分解转换回原始xyz坐标系。基于Liutex的本原分解创建了新的流体运动学,可以为建立新的流体动力学做好准备。由于流体运动学是流体动力学的基础,因此新的流体运动学可以代替经典的流体运动学,亥姆霍兹或CS分解,并为开发新的流体动力学打开新的大门,特别是用于涡旋科学和湍流研究。

更新日期:2021-05-12
down
wechat
bug