当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A dynamic stability design strategy for lithium metal solid state batteries
Nature ( IF 50.5 ) Pub Date : 2021-05-12 , DOI: 10.1038/s41586-021-03486-3
Luhan Ye 1 , Xin Li 1
Affiliation  

A solid-state electrolyte is expected to suppress lithium (Li) dendrite penetration with high mechanical strength1,2,3,4. However, in practice it still remains challenging to realise a lithium metal anode for batteries, because micrometre- or submicrometre-sized cracks in ceramic pellets can frequently be generated during battery assembly or long-time cycling3,5. Once cracks form, lithium dendrite penetration is inevitable6,7. Here we describe a solid-state battery design with a hierarchy of interface stabilities (to lithium metal responses), to achieve an ultrahigh current density with no lithium dendrite penetration. Our multilayer design has the structure of a less-stable electrolyte sandwiched between more-stable solid electrolytes, which prevents any lithium dendrite growth through well localized decompositions in the less stable electrolyte layer. A mechanism analogous to the expansion screw effect is proposed, whereby any cracks are filled by dynamically generated decompositions that are also well constrained, probably by the ‘anchoring’ effect the decompositions induce. The cycling performance of the lithium metal anode paired with a LiNi0.8Mn0.1Co0.1O2 cathode is very stable, with an 82 per cent capacity retention after 10,000 cycles at a 20C rate (8.6 milliamps per centimetre squared) and 81.3 per cent capacity retention after 2,000 cycles at a 1.5C rate (0.64 milliamps per centimetre squared). Our design also enables a specific power of 110.6 kilowatts per kilogram and specific energy up to 631.1 watt hours per kilogram at the micrometre-sized cathode material level.



中文翻译:

一种锂金属固态电池的动态稳定性设计策略

固态电解质有望以高机械强度1,2,3,4抑制锂 (Li) 枝晶的渗透。然而,在实践中,实现电池的锂金属负极仍然具有挑战性,因为在电池组装或长时间循环3,5期间,陶瓷颗粒中经常会产生微米或亚微米大小的裂缝。一旦裂缝形成,锂枝晶的渗透是不可避免的6,7. 在这里,我们描述了一种具有层次界面稳定性(对锂金属响应)的固态电池设计,以实现无锂枝晶穿透的超高电流密度。我们的多层设计具有夹在更稳定的固体电解质之间的不太稳定的电解质的结构,这可以通过在不太稳定的电解质层中进行良好的局部分解来防止任何锂枝晶生长。提出了一种类似于膨胀螺丝效应的机制,其中任何裂缝都由动态生成的分解填充,这些分解也受到很好的约束,可能是由分解引起的“锚定”效应。锂金属负极与LiNi 0.8 Mn 0.1 Co 0.1 O 2配对的循环性能阴极非常稳定,以 20C 的速率(每平方厘米 8.6 毫安)循环 10,000 次后容量保持率为 82%,以 1.5C 的速率(每平方厘米 0.64 毫安)循环 2,000 次后容量保持率为 81.3%。我们的设计还能在微米尺寸的阴极材料水平上实现每公斤 110.6 千瓦的比功率和每公斤 631.1 瓦时的比能量。

更新日期:2021-05-12
down
wechat
bug