当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-Temperature Separating Lithium-Ion Battery Interfacial Polarization Based on Distribution of Relaxation Times (DRT) of Impedance
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2020-10-02 , DOI: 10.1109/tte.2020.3028475
Jiangong Zhu , Michael Knapp , Xinyang Liu , Peng Yan , Haifeng Dai , Xuezhe Wei , Helmut Ehrenberg

Noninvasive techniques for evaluating lithium-ion batteries treated as an important component of transportation electrification are of great importance. A method for separating and interpreting battery interfacial processes is proposed, which is based on the temperature dependence of battery impedance as found with the distribution of relaxation times (DRT) analysis. The battery interfacial processes are influenced stronger as the temperature decreases, and the DRT is useful to identify the processes coming from distinct boundaries. By using the abovementioned advantages, the processes at the interfaces of full cells are assigned to the corresponding cathode and anode. Four interfacial processes, i.e., particle/particle and electrode/current-collector contact process, passive film process, charge transfer in the anode, and charge transfer in the cathode, are effectively separated depending on their different responses to temperatures. The changes in temperature of the four interfacial processes for cycled commercial batteries are investigated. SEM and XRD techniques are employed to examine the aged electrodes. Activation energies against cycle numbers for each process are identified to verify the method reliability. This method has the benefit of easy identification and could separate the interfacial polarization of each electrode, providing new insights for the diagnosis for lithium-ion battery applications.

中文翻译:

基于阻抗弛豫时间(DRT)分布的低温分离锂离子电池界面极化

评价作为运输电气化重要组成部分的锂离子电池的非侵入性技术非常重要。提出了一种分离和解释电池界面过程的方法,该方法基于电池阻抗的温度依赖性,这是通过弛豫时间分布(DRT)分析发现的。随着温度降低,电池界面过程受到的影响更大,DRT可用于识别来自不同边界的过程。通过利用上述优点,将全电池界面处的过程分配给相应的阴极和阳极。四个界面过程,即粒子/粒子与电极/集电器的接触过程,钝化膜过程,阳极中的电荷转移,根据它们对温度的不同响应,有效地分离了阴极中的电荷和电荷转移。研究了循环商业电池的四个界面过程的温度变化。SEM和XRD技术用于检查老化的电极。确定每个过程的活化能和循环数,以验证方法的可靠性。这种方法的优点是易于识别,并且可以分离每个电极的界面极化,为锂离子电池应用的诊断提供新的见解。SEM和XRD技术用于检查老化的电极。确定每个过程的活化能和循环数,以验证方法的可靠性。这种方法的优点是易于识别,并且可以分离每个电极的界面极化,为锂离子电池应用的诊断提供新的见解。SEM和XRD技术用于检查老化的电极。确定每个过程的活化能和循环数,以验证方法的可靠性。这种方法的优点是易于识别,并且可以分离每个电极的界面极化,为锂离子电池应用的诊断提供新的见解。
更新日期:2020-10-02
down
wechat
bug