当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power and Traffic Nexus: From Perspective of Power Transmission Network and Electrified Highway Network
IEEE Transactions on Transportation Electrification ( IF 7.2 ) Pub Date : 2020-10-13 , DOI: 10.1109/tte.2020.3030806
Si Lv , Zhinong Wei , Guoqiang Sun , Sheng Chen , Haixiang Zang

The increasing prevalence of electric vehicles (EVs) and emerging dynamic wireless charging techniques have increased the interdependence between the power and transportation systems. This article investigates a new nexus scenario—the electrified highway network (EHN) and power transmission network (PTN). The independent but interrelated operation of the two networks is analyzed. On the EHN side, a combined charging–driving navigation (CCDN) model, which rigorously considers EV travel speed and charge/discharge behaviors, is proposed and formulated as an irregular dynamic programming problem. A chronological search algorithm is designed to derive the optimal charging–driving decision sequences. The economic operation of the PTN is formulated as a direct current optimal power flow problem. Hourly location marginal prices (LMPs) and charge/discharge demands are exchanged between the two networks. The abovementioned LMP-based interaction forms a Nash-type game, in which both networks aim to minimize their own operation costs. A best-response decomposition algorithm combined with a continuous LMP method is developed to identify the equilibrium state. Numerical results demonstrate the effectiveness of the CCDN model in modeling EV charging–driving behaviors in the EHN. Moreover, the results show that, under certain conditions, mobility of EVs along the EHN can economically relieve the transmission congestion and reduce the operation costs of both networks.

中文翻译:

电力和交通枢纽:从输电网络和电气化公路网络的角度

电动汽车(EV)的日益普及和新兴的动态无线充电技术增加了电力和运输系统之间的相互依赖性。本文研究了一种新的关系场景:电气化公路网(EHN)和输电网络(PTN)。分析了两个网络的独立但相互关联的操作。在EHN方面,提出了一种严格考虑电动汽车行驶速度和充电/放电行为的组合式充电驾驶导航(CCDN)模型,并将其公式化为不规则的动态规划问题。设计了按时间顺序搜索的算法,以得出最佳的充电驱动决策序列。PTN的经济运行被公式化为直流最优潮流问题。每小时位置边际价格(LMP)和充电/放电需求在两个网络之间交换。上述基于LMP的交互形成了一个Nash型游戏,其中两个网络都旨在将其自身的运营成本降至最低。提出了一种最佳响应分解算法,并结合了连续的LMP方法来识别平衡状态。数值结果证明了CCDN模型在对EHN中的EV充电行为进行建模方面的有效性。此外,结果表明,在一定条件下,电动汽车沿EHN的移动性可以经济地缓解传输拥塞并降低两个网络的运营成本。提出了一种最佳响应分解算法,并结合了连续的LMP方法来识别平衡状态。数值结果证明了CCDN模型在对EHN中的EV充电行为进行建模方面的有效性。此外,结果表明,在一定条件下,电动汽车沿EHN的移动性可以经济地缓解传输拥塞并降低两个网络的运营成本。提出了一种最佳响应分解算法,并结合了连续的LMP方法来识别平衡状态。数值结果证明了CCDN模型在对EHN中的EV充电行为进行建模方面的有效性。此外,结果表明,在一定条件下,电动汽车沿EHN的移动性可以经济地缓解传输拥塞并降低两个网络的运营成本。
更新日期:2020-10-13
down
wechat
bug