当前位置: X-MOL 学术J. Geom. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Marcinkiewicz–Zygmund Inequalities and $$A_p$$ A p -Weights for $$L$$ L -Shape Arcs
The Journal of Geometric Analysis ( IF 1.1 ) Pub Date : 2021-05-10 , DOI: 10.1007/s12220-021-00669-2
Charles K. Chui , Lefan Zhong

Let \(\Gamma \) be an \(L\)-shape arc consisting of 2 line segments that meet at an angle different from \(\pi \) in the complex \(z\)-plane \({\mathbb C}\). Application of the exterior conformal map \(\psi \) from \(|w| > 1\) onto \({\mathbb C}\backslash \Gamma \), with \(\psi (\infty )= \infty \), introduces the level curves \(\Gamma _n=\{z= \psi (w):|w|=1+{1\over {n+1}}\}\). Let \(\psi ^*\) denote the continuous extension of \(\psi \) from \(|w|> 1\) to \(|w|\ge 1\), so that any family \(\{z_{n,k}: k = 0, 1, \dots , n\}\) of points on \(\Gamma \) can be written as \(\{z_{n,k} = \psi ^*(w_{n,k})\}\), where \(|w_{n,k}|= 1\). Let \(\omega _n (z)= \Pi ^n_{k=0} (z-z_{n,k})\). The main objective of this paper is to show that for \(L\)-shape arcs, validation of the Marcinkiewicz–Zygmund inequalities is equivalent to that of the totality of the \(A_p\)-weight conditions of \(|\omega _n (z) |\) on \(\Gamma _n\) and a mild separation condition of \(\{z_{n,k}\}\). Since the Marcinkiewicz–Zygmund inequalities are essential to the study of Lagrange polynomial interpolation of continuous functions at the nodes \(\{z_{n,k}\}\), another objective of this paper is to investigate the behavior of the polynomial interpolants at the Fejér points, defined by \(\{z_{n,k} = \psi ^*(\mathrm{{e}}^{i(2k\pi + \theta )/(n+1)})\}\) for any choice of \(\theta \). In this regard, we recall that for the interval [\(-1\), 1], the Fejér points \(\{z_{n,k} = \psi ^*(\mathrm{{e}}^{i(2k+1)\pi /(n+1)})\}\) agree with the Chebyshev points and that the Chebyshev points are most commonly used as nodes for Lagrange polynomial interpolation. On the other hand, numerical experimentation demonstrates that for a typical open \(L\)-shape arc \(\Gamma \), the Lebesgue constants tend to \(\infty \) at the rate of \(O((\log (n))^2)\), as the polynomial degree \(n\) increases, while the \(A_{p}\)-weight conditions for the Fejér points \(\{z_{n,k}\}\) do not carry over from [\(-1\), 1] to a truly \(L\)-shape arc. Further numerical experiments also demonstrate that the least upper bounds of the Marcinkiewicz–Zygmund inequalities for the canonical Lagrange interpolation polynomials at \(\{z_{n,k}\}\) seem to grow at the rate of \(n^{\beta }\), for some \(\beta >0\) that depends on \(p >1\).



中文翻译:

关于Marcinkiewicz–Zygmund不等式和$$ A $ p $ A p-$ L $$ L的权重-形状弧

\(\伽玛\)\(L \) -形弧由2个线段的,在从一个角度不同满足\(\ PI \)在复\(Z \) -平面\({\ mathbb C} \)。外部保形映射的应用\(\ PSI \)(| W |> 1 \)\\({\ mathbbÇ} \反斜杠\伽玛\) ,用\(\ PSI(\ infty)= \ infty \ ),介绍电平曲线\(\ Gamma _n = \ {z = \ psi(w):| w | = 1 + {1 \ {n + 1}} \} \)。令\(\ psi ^ * \)表示\(\ psi \)\(| w |> 1 \)\(| w | \ ge 1 \)的连续扩展,因此\(\ Gamma \)点的任何族\(\ {z_ {n,k}:k = 0,1,\ dots,n \} \)都可以写成\(\ {z_ {n ,k} = \ psi ^ *(w_ {n,k})\} \),其中\(| w_ {n,k} | = 1 \)。令\(\ omega _n(z)= \ Pi ^ n_ {k = 0}(z-z_ {n,k})\)。本文的主要目标是表明,\(L \) -形弧,Marcinkiewicz型-上Zygmund不等式验证是等同于的总体的\(A_p \)的-weight条件\(| \欧米加_n(z)| \)放在\(\ Gamma _n \)上,且条件为\(\ {z_ {n,k} \} \)\。由于Marcinkiewicz-Zygmund不等式对于研究节点\(\ {z_ {n,k} \} \)上连续函数的Lagrange多项式插值至关重要,因此,本文的另一个目标是研究多项式插值的行为在Fejér点处,由\(\ {z_ {n,k} = \ psi ^ *(\ mathrm {{e}} ^ {i(2k \ pi + \ theta)/(n + 1)})定义\ } \)用于\(\ theta \)的任何选择。在这方面,我们记得对于间隔[ \(-1 \),1],Fejér点\(\ {z_ {n,k} = \ psi ^ *(\ mathrm {{e}} ^ {i (2k + 1)\ pi /(n + 1)})\} \)同意Chebyshev点,并且Chebyshev点最常用作Lagrange多项式插值的节点。在另一方面,数值实验证明,对于一个典型的开放\(L \) -形弧\(\伽玛\) ,勒贝格常数趋于\(\ infty \)在速率\(O((\日志(n))^ 2)\),随着多项式次数\(n \)的增加,而Fejér点的\(A_ {p} \)-权重条件\(\ {z_ {n,k} \} \)不要从[ \(-1 \),1]延续到真正的\(L \)形弧。进一步的数值实验还表明,在\(\ {z_ {n,k} \} \)处的规范Lagrange插值多项式的Marcinkiewicz-Zygmund不等式的最小上界似乎以\(n ^ {\ beta} \),对于某些依赖于\(p> 1 \)的\(\ beta> 0 \)

更新日期:2021-05-11
down
wechat
bug