当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the discrepancy of set systems definable in sparse graph classes
arXiv - CS - Logic in Computer Science Pub Date : 2021-05-08 , DOI: arxiv-2105.03693
Mario Grobler, Patrice Ossona de Mendez, Sebastian Siebertz, Alexandre Vigny

Discrepancy is a natural measure for the inherent complexity of set systems with many applications in mathematics and computer science. The discrepancy of a set system $(U,\mathscr S)$ is the minimum over all mappings $\chi\colon U\rightarrow\{-1,1\}$ of $\max_{S\in\mathscr S}\bigl|\sum_{v\in S}\chi(v)\bigr|$. We study the discrepancy of set systems that are first-order definable in sparse graph classes. We prove that all the set systems definable in a monotone class $\mathscr C$ have bounded discrepancy if and only if $\mathscr C$ has bounded expansion, and that they have hereditary discrepancy at most $|U|^{c}$ (for some~$c<1/2$) if and only if $\mathscr C$ is nowhere dense. However, if $\mathscr C$ is somewhere dense, then for every positive integer $d$ there is a set system of $d$-tuples definable in $\mathscr C$ with discrepancy $\Omega(|U|^{1/2})$. From the algorithmic point of view, we prove that if $\mathscr C$ is a class of graphs with bounded expansion and $\phi(\bar x;\bar y)$ is a first-order formula, then for each input graph $G\in\mathscr C$, a mapping $\chi:V(G)^{|\bar x|}\rightarrow\{-1,1\}$ witnessing the boundedness of the discrepancy of the set-system defined by~$\phi$ can be computed in $\mathcal O(|G|^{|\bar x|})$ time. We also deduce that for such set-systems, when $|\bar x|=1$, $\varepsilon$-nets of size $\mathcal{O}(1/\varepsilon)$ can be computed in time $\mathcal{O}(|G|\,\log |G|)$ and $\varepsilon$-approximations of size $\mathcal{O}(1/\varepsilon)$ can be computed in polynomial time.

中文翻译:

关于稀疏图类中可定义的集合系统的差异

差异是设置系统固有的复杂性的自然度量,它在数学和计算机科学中有许多应用。集合系统$(U,\ mathscr S)$的差异是$ \ max_ {S \ in \ mathscr S}的所有映射$ \ chi \冒号U \ rightarrow \ {-1,1 \} $中的最小值\ bigl | \ sum_ {v \ in S} \ chi(v)\ bigr | $。我们研究了在稀疏图类中一阶可定义的集合系统的差异。我们证明,在且仅当$ \ mathscr C $具有界线扩展时,所有在单调类$ \ mathscr C $中可定义的集合系统都具有界线差异,并且它们最多具有遗传差异$ | U | ^ {c} $ (对于〜$ c <1/2 $)(且仅当$ \ mathscr C $无处密集)时。但是,如果$ \ mathscr C $密集,那么对于每个正整数$ d $,都有一个$ d $ -tuples集合系统,可在$ \ mathscr C $中定义,且有差异$ \ Omega(| U | ^ {1/2})$。从算法角度来看,我们证明如果$ \ mathscr C $是一类有界展开图,而$ \ phi(\ bar x; \ bar y)$是一阶公式,则对于每个输入图$ G \ in \ mathscr C $,映射$ \ chi:V(G)^ {| \ bar x |} \ rightarrow \ {-1,1 \} $见证了定义的集合系统差异的有界by〜$ \ phi $可以在$ \ mathcal O(| G | ^ {| \ bar x |})$时间中计算。我们还推断出,对于这样的集合系统,当$ | \ bar x | = 1 $时,可以及时计算$ \ mathcal {O}(1 / \ varepsilon)$大小的$ \ varepsilon $ -nets可以在多项式时间内计算{O}(| G | \,\ log | G |)$和$ \ varepsilon $-大小为$ \ mathcal {O}(1 / \ varepsilon)$的近似值。我们证明如果$ \ mathscr C $是一类有界展开图,而$ \ phi(\ bar x; \ bar y)$是一阶公式,则对于每个输入图$ G \ in \ mathscr C $,一个映射$ \ chi:V(G)^ {| \ bar x |} \ rightarrow \ {-1,1 \} $见证了〜$ \ phi $所定义的集合系统差异的界以$ \ mathcal O(| G | ^ {| \ bar x |})$时间计算。我们还推断出,对于这样的集合系统,当$ | \ bar x | = 1 $时,可以及时计算$ \ mathcal {O}(1 / \ varepsilon)$大小的$ \ varepsilon $ -nets可以在多项式时间内计算{O}(| G | \,\ log | G |)$和$ \ varepsilon $-大小为$ \ mathcal {O}(1 / \ varepsilon)$的近似值。我们证明如果$ \ mathscr C $是一类有界展开图,而$ \ phi(\ bar x; \ bar y)$是一阶公式,则对于每个输入图$ G \ in \ mathscr C $,一个映射$ \ chi:V(G)^ {| \ bar x |} \ rightarrow \ {-1,1 \} $见证了〜$ \ phi $所定义的集合系统差异的界以$ \ mathcal O(| G | ^ {| \ bar x |})$时间计算。我们还推断出,对于这样的集合系统,当$ | \ bar x | = 1 $时,可以及时计算$ \ mathcal {O}(1 / \ varepsilon)$大小的$ \ varepsilon $ -nets可以在多项式时间内计算{O}(| G | \,\ log | G |)$和$ \ varepsilon $-大小为$ \ mathcal {O}(1 / \ varepsilon)$的近似值。可以在$ \ mathcal O(| G | ^ {| \ bar x |})$时间中计算1 \} $见证由〜$ \ phi $定义的集合系统的差异的有界性。我们还推断出,对于这样的集合系统,当$ | \ bar x | = 1 $时,可以及时计算$ \ mathcal {O}(1 / \ varepsilon)$大小的$ \ varepsilon $ -nets可以在多项式时间内计算{O}(| G | \,\ log | G |)$和$ \ varepsilon $-大小为$ \ mathcal {O}(1 / \ varepsilon)$的近似值。可以在$ \ mathcal O(| G | ^ {| \ bar x |})$时间中计算1 \} $见证由〜$ \ phi $定义的集合系统的差异的有界性。我们还推断出,对于这样的集合系统,当$ | \ bar x | = 1 $时,可以及时计算$ \ mathcal {O}(1 / \ varepsilon)$大小的$ \ varepsilon $ -nets可以在多项式时间内计算{O}(| G | \,\ log | G |)$和$ \ varepsilon $-大小为$ \ mathcal {O}(1 / \ varepsilon)$的近似值。
更新日期:2021-05-11
down
wechat
bug