当前位置: X-MOL 学术Int. J. Coal Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of methane adsorption in diverse organic pores in shale reservoirs with multi-period geological evolution
International Journal of Coal Science & Technology Pub Date : 2021-05-11 , DOI: 10.1007/s40789-021-00431-7
Shangbin Chen , Chu Zhang , Xueyuan Li , Yingkun Zhang , Xiaoqi Wang

In shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.



中文翻译:

页岩储集层中不同有机孔隙中甲烷的多期地质演化模拟

在页岩储集层中,有机质热演化过程中形成的具有各种结构的有机孔隙是甲烷吸附的主要储存地点。然而,在热演化过程中,对甲烷在多种类型和多尺度的有机质孔中的吸附特性还没有得到足够的研究。本研究采用分子模拟方法,根据四川盆地龙马溪组页岩储层的地质条件,研究了甲烷的吸附特征。结果表明,孔隙结构特征会影响甲烷的吸附特征。缝隙孔对甲烷的吸附能力远高于圆柱孔。孔隙内的凹槽空间将改变甲烷分子在孔隙中的密度分布,大大提高了孔的吸附能力,并增加了吸附过程的压敏性。尽管不同形状的甲烷吸附特性的变化与孔径不一致,但是当孔径约为2 nm时,所有孔都具有最强的甲烷吸附能力。另外,热释放过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。并增加吸附过程的压力敏感性。尽管不同形状的甲烷吸附特性的变化与孔径不一致,但是当孔径约为2 nm时,所有孔都具有最强的甲烷吸附能力。另外,热释放过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减小,随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。并增加吸附过程的压力敏感性。尽管不同形状的甲烷吸附特性的变化与孔径不一致,但是当孔径约为2 nm时,所有孔都具有最强的甲烷吸附能力。另外,热释放过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。尽管不同形状的甲烷吸附特性的变化与孔径不一致,但是当孔径约为2 nm时,所有孔都具有最强的甲烷吸附能力。另外,热释放过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。尽管不同形状的甲烷吸附特性的变化与孔径不一致,但是当孔径约为2 nm时,所有孔都具有最强的甲烷吸附能力。另外,热释放过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。热演化过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。热演化过程中温度和压力的变化也是控制甲烷吸附特性的重要因素。孔隙吸附能力首先随着压力的增加而增加,然后减少,然后随着温度的增加而增加。在热演化的早期,孔隙的吸附能力强,压力敏感性差。而在后期,情况恰恰相反。

更新日期:2021-05-11
down
wechat
bug