当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi
Biotechnology Advances ( IF 12.1 ) Pub Date : 2021-05-11 , DOI: 10.1016/j.biotechadv.2021.107770
Paul Daly 1 , Feng Cai 2 , Christian P Kubicek 3 , Siqi Jiang 4 , Marica Grujic 3 , Mohammad Javad Rahimi 3 , Mohamed Salah Sheteiwy 5 , Richard Giles 6 , Asad Riaz 7 , Ronald P de Vries 8 , Günseli Bayram Akcapinar 9 , Lihui Wei 10 , Irina S Druzhinina 2
Affiliation  

In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.



中文翻译:

从木质纤维素到塑料:关于真菌降解方法的知识转移

在这篇综述中,我们认为通过将有关木质纤维素降解研究的知识转移到塑料降解研究中可以学到很多东西。塑料废料在环境中累积到危险水平,因为它固有地对生物降解有害。植物进化出木质纤维素对降解具有抗性,但随着时间的流逝,真菌开始能够利用木质纤维素进行营养。降解木质纤维素的真菌策略如何有助于塑料降解的实例包括真菌如何克服木质素的疏水性(例如产生疏水蛋白)和纤维素的结晶度(例如氧化方法)。同时,了解木质纤维素降解方法的知识可能是有见地的,例如高级显微镜,基因组方法和后基因组方法(例如基因表达分析)。生物木质纤维素降解的已知局限性,例如对生物燃料生产进行物理化学预处理的必要性,可以预示生物塑料降解的潜在局限性。从木质纤维素降解中吸取教训以进行塑料降解对于生物安全性也很重要,因为工程塑料降解真菌还可以提高植物生物量的降解能力。尽管塑料与木质纤维素明显不同,因为它们缺乏可水解的CC或CO键,因此具有较高的难降解性,但仍存在明显的相似之处,例如两种类型的化合物都是疏水性聚合物与无定形和晶体区域的混合物,并且都需要水解酶和氧化还原酶进行降解。因此,从真菌木质纤维素降解中可以学到很多教训。

更新日期:2021-05-22
down
wechat
bug