当前位置: X-MOL 学术Front. Comput. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Network Architecture for Bidirectional Neurovascular Coupling in Rat Whisker Barrel Cortex
Frontiers in Computational Neuroscience ( IF 2.1 ) Pub Date : 2021-05-10 , DOI: 10.3389/fncom.2021.638700
Bhadra S Kumar 1 , Aditi Khot 2 , V Srinivasa Chakravarthy 1 , S Pushpavanam 3
Affiliation  

Neurovascular coupling is typically considered as a master-slave relationship between the neurons and the cerebral vessels: the neurons demand energy which the vessels supply in the form of glucose and oxygen. In the recent past, both theoretical and experimental studies have suggested that the neurovascular coupling is a bidirectional system, a loop that includes a feedback signal from the vessels influencing neural firing and plasticity. An integrated model of bidirectionally connected neural network and the vascular network is hence required to understand the relationship between the informational and metabolic aspects of neural dynamics. In this study, we present a computational model of the bidirectional neurovascular system in the whisker barrel cortex and study the effect of such coupling on neural activity and plasticity as manifest in the whisker barrel map formation. In this model, a biologically plausible self-organizing network model of rate coded, dynamic neurons is nourished by a network of vessels modeled using the biophysical properties of blood vessels. The neural layer which is designed to simulate the whisker barrel cortex of rat transmits vasodilatory signals to the vessels. The feedback from the vessels is in the form of available oxygen for oxidative metabolism whose end result is the ATP necessary to fuel neural firing. The model captures the effect of the feedback from the vascular network on the neuronal map formation in the whisker barrel model under normal and pathological (Hypoxia and Hypoxia-Ischemia) conditions.

中文翻译:

大鼠晶须桶皮层双向神经血管耦合的网络架构

神经血管耦合通常被认为是神经元和脑血管之间的主从关系:神经元需要能量,而血管以葡萄糖和氧气的形式提供能量。最近,理论和实验研究都表明神经血管耦合是一个双向系统,一个包含来自影响神经放电和可塑性的血管的反馈信号的循环。因此,需要双向连接的神经网络和血管网络的集成模型来理解神经动力学的信息和代谢方面之间的关系。在这项研究中,我们提出了胡须桶皮层中双向神经血管系统的计算模型,并研究了这种耦合对胡须桶图形成中所体现的神经活动和可塑性的影响。在该模型中,速率编码的动态神经元的生物学上合理的自组织网络模型由使用血管的生物物理特性建模的血管网络滋养。旨在模拟大鼠胡须桶皮层的神经层将血管舒张信号传输至血管。来自血管的反馈是以可用于氧化代谢的氧气的形式,其最终结果是为神经放电提供燃料所需的 ATP。该模型捕捉了正常和病理(缺氧和缺氧缺血)条件下血管网络反馈对晶须桶模型中神经元图形成的影响。
更新日期:2021-05-10
down
wechat
bug