当前位置: X-MOL 学术Urban Clim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous media: A faster numerical simulation method applicable to real urban communities
Urban Climate ( IF 6.4 ) Pub Date : 2021-05-08 , DOI: 10.1016/j.uclim.2021.100865
Heting Wang , Chong Peng , Wenyu Li , Chao Ding , Tingzhen Ming , Nan Zhou

The rapid development of cities worldwide and the expansion of a global economy have rendered climate change one of mankind's most severe challenges. The built environment has become a major focus for research into ways to reduce the climate effects of urban areas. Researchers who seek to model the performance of a large group of buildings, however, have available only complex simulation methods that require a massive amount of calculation if applied within an ordinary computer environment. Finding a simpler, more efficient modeling process would be a valuable contribution. This study selects a typical residential community as the simulation object, assigning boundary conditions derived from field measurements. A method of numerical simulation that treats buildings as porous media is applied to the area to simulate wind conditions. Results of the porous media method are compared with results from standard computational fluid dynamics (CFD) methods. Modeling results of the porous media method also are validated against physically measured data. Both validation methods indicate that the porous media method produces reliable results at a higher simulation efficiency. Compared with standard CFD method, in this study, the porous media method reduces the number of meshing grids by 27.8%, reduces the total iteration steps by 52.2% and reduces the total computational time by 66.7%. The porous media method is applicable to large-scale construction and intensive modeling, where it can effectively predict the wind environment at the initial planning stage.



中文翻译:

多孔介质:适用于实际城市社区的更快的数值模拟方法

全球城市的快速发展和全球经济的扩张,已使气候变化成为人类最严峻的挑战之一。建筑环境已成为研究减少城市气候影响的方法的主要重点。但是,试图对大量建筑物的性能进行建模的研究人员只能使用复杂的模拟方法,如果在普通的计算机环境中使用该方法,则需要进行大量的计算。找到一个更简单,更有效的建模过程将是一个宝贵的贡献。本研究选择一个典型的住宅社区作为模拟对象,分配从野外测量得出的边界条件。将建筑物视为多孔介质的数值模拟方法应用于该区域以模拟风况。将多孔介质方法的结果与标准计算流体力学(CFD)方法的结果进行比较。多孔介质方法的建模结果也可以根据物理测量数据进行验证。两种验证方法均表明,多孔介质方法可在更高的仿真效率下产生可靠的结果。与标准CFD方法相比,本研究中的多孔介质方法将网格划分的数量减少了27.8%,将总迭代步骤减少了52.2%,并将总计算时间减少了66.7%。多孔介质法适用于大规模建设和密集建模,可以在规划初期有效预测风环境。多孔介质方法的建模结果也可以根据物理测量数据进行验证。两种验证方法均表明,多孔介质方法可在更高的仿真效率下产生可靠的结果。与标准CFD方法相比,本研究中的多孔介质方法将网格划分的数量减少了27.8%,将总迭代步骤减少了52.2%,并将总计算时间减少了66.7%。多孔介质法适用于大规模建设和密集建模,可以在规划初期有效预测风环境。多孔介质方法的建模结果也可以根据物理测量数据进行验证。两种验证方法均表明,多孔介质方法可在更高的仿真效率下产生可靠的结果。与标准CFD方法相比,本研究中的多孔介质方法将网格划分的数量减少了27.8%,将总迭代步骤减少了52.2%,并将总计算时间减少了66.7%。多孔介质法适用于大规模建设和密集建模,可以在规划初期有效预测风环境。多孔介质方法将网格划分的数量减少了27.8%,将总迭代步骤减少了52.2%,并将总计算时间减少了66.7%。多孔介质法适用于大规模建设和密集建模,可以在规划初期有效预测风环境。多孔介质方法将网格划分的数量减少了27.8%,将总迭代步骤减少了52.2%,并将总计算时间减少了66.7%。多孔介质法适用于大规模建设和密集建模,可以在规划初期有效预测风环境。

更新日期:2021-05-09
down
wechat
bug