当前位置: X-MOL 学术Nucl. Eng. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Beam line design and beam transport calculation for the μSR facility at RAON
Nuclear Engineering and Technology ( IF 2.6 ) Pub Date : 2021-05-08 , DOI: 10.1016/j.net.2021.04.028
Kihong Pak , Junesic Park , Jae Young Jeong , Jae Chang Kim , Kyungmin Kim , Yong Hyun Kim , Jaebum Son , Ju Hahn Lee , Wonjun Lee , Yong Kyun Kim

The Rare Isotope Science Project was launched in 2011 in Korea toward constructing the Rare isotope Accelerator complex for ON line experiments (RAON). RAON will house several experimental systems, including the Muon Spin Rotation/Relaxation/Resonance (μSR) facility in High Energy Experimental Building B. This facility will use 600-MeV protons with a maximum current of 660 pμA and beam power of 400 kW. The key μSR features will facilitate projects related to condensed-matter and nuclear physics. Typical experiments require a few million surface muons fully spin-polarized opposite to their momentum for application to small samples. Here, we describe the design of a muon transport beam line for delivering the requisite muon numbers and the electromagnetic-component specifications in the μSR facility. We determine the beam-line configuration via beam-optics calculations and the transmission efficiency via single-particle tracking simulations. The electromagnet properties, including fringe field effects, are applied for each component in the calculations. The designed surface-muon beamline is 17.3 m long, consisting of 2 solenoids, 2 dipoles affording 70° deflection, 9 quadrupoles, and a Wien filter to eliminate contaminant positrons. The average incident-muon flux and spin rotation angle are estimated as 5.2 × 106 μ+/s and 45°, respectively.



中文翻译:

RAON μSR 设施的光束线设计和光束传输计算

稀有同位素科学项目于 2011 年在韩国启动,旨在构建用于在线实验 (RAON) 的稀有同位素加速器复合体。RAON 将容纳多个实验系统,包括高能实验楼 B 中的μ子自旋旋转/弛豫/共振 (μSR) 设施。该设施将使用 600-MeV 质子,最大电流为 660 pμA,束功率为 400 kW。关键的 μSR 功能将促进与凝聚态物质和核物理相关的项目。典型的实验需要几百万个完全自旋极化与其动量相反的表面μ子,以应用于小样本。在这里,我们描述了用于在 μSR 设施中提供必需的 μ 子数和电磁组件规格的 μ 子传输束线的设计。我们通过光束光学计算确定光束线配置,并通过单粒子跟踪模拟确定传输效率。计算中的每个组件都应用了电磁特性,包括边缘场效应。设计的表面 μ 子束线长 17.3 m,由 2 个螺线管、2 个提供 70°偏转的偶极子、9 个四极子和一个消除污染正电子的 Wien 滤波器组成。平均入射介子通量和自旋旋转角估计为 5.2 × 10 和 Wien 过滤器以消除污染物正电子。平均入射介子通量和自旋旋转角估计为 5.2 × 10 和 Wien 过滤器以消除污染物正电子。平均入射介子通量和自旋旋转角估计为 5.2 × 10分别为 6 μ + /s 和 45°。

更新日期:2021-05-08
down
wechat
bug