当前位置: X-MOL 学术Glob. Biogeochem. Cycles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Constraints on Global Methane Emissions and Sinks Using δ13C-CH4
Global Biogeochemical Cycles ( IF 5.4 ) Pub Date : 2021-05-08 , DOI: 10.1029/2021gb007000
X Lan 1, 2 , S Basu 3, 4 , S Schwietzke 1, 5 , L M P Bruhwiler 2 , E J Dlugokencky 2 , S E Michel 6 , O A Sherwood 6, 7 , P P Tans 2 , K Thoning 2 , G Etiope 8, 9 , Q Zhuang 10 , L Liu 10 , Y Oh 2, 10 , J B Miller 2 , G Pétron 1, 2 , B H Vaughn 6 , M Crippa 11
Affiliation  

We study the drivers behind the global atmospheric methane (CH4) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984–2016 to produce three-dimensional fields of CH4 and δ13C-CH4, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH4 emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed δ13C-CH4. Increased FF CH4 emissions are unlikely to be the dominant driver for the post-2006 global CH4 increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH4 increase since it does not track the observed decrease in global mean δ13C-CH4. Different CH4 sinks have different fractionation factors for δ13C-CH4, thus we can investigate the uncertainty introduced by the reaction of CH4 with tropospheric chlorine (Cl), a CH4 sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH4 sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.

中文翻译:


使用 δ13C-CH4 改进对全球甲烷排放和汇的限制



我们研究了 2006 年之后观察到的全球大气甲烷 (CH 4 ) 增加背后的驱动因素。候选排放和汇情景是根据文献中提出的假设构建的。这些场景在 1984-2016 年的 TM5 示踪剂输运模型中进行模拟,以产生 CH 4δ 13 C-CH 4的三维场,并将其与观测结果进行比较,以在一个通用模型框架中测试文献中的竞争假设。我们发现全球大气研究排放数据库4.3.2清单中的化石燃料(FF) CH 4排放趋势与观测到的δ 13 C-CH 4不一致。尽管 FF 排放量有可能小幅增加,但 FF CH 4排放量的增加不太可能成为 2006 年后全球 CH 4增加的主要驱动力。我们还发现,羟基自由基 (OH) 丰度的显着下降无法解释 2006 年后全球 CH 4 的增加,因为它没有跟踪观察到的全球平均值δ 13 C-CH 4的下降。不同的CH 4汇具有不同的δ 13 C-CH 4分馏因子,因此我们可以研究CH 4与对流层氯(Cl)反应引入的不确定性,CH 4汇的丰度、空间分布和时间变化仍然存在不确定。我们的结果表明,在我们的模型中包含或排除对流层 Cl 作为 13 Tg/年 CH 4汇,会使估计的化石排放量改变约 20%。 我们还发现,通过基于静态湿地面积图和动态湿地面积图使用不同的湿地排放量,FF 和微生物源之间的划分相差 20 Tg/年,约占估计化石排放量的 12%。
更新日期:2021-06-17
down
wechat
bug