当前位置: X-MOL 学术J. Pet. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The rock breaking mechanism analysis of axial ultra-high frequency vibration assisted drilling by single PDC cutter
Journal of Petroleum Science and Engineering Pub Date : 2021-05-08 , DOI: 10.1016/j.petrol.2021.108859
Yan Zhao , Congshan Zhang , Zengzeng Zhang , Ke Gao , Jiasheng Li , Xiaobo Xie

Axial ultra-high frequency vibration (UHFV)-assisted drilling technology that combines polycrystalline diamond compact bits and rotary ultrasonic machining technology is expected to improve rock-breaking efficiency and reduce the drilling costs of deep and ultra-deep wells. To better understand the rock-breaking mechanism under a UHFV load and provide a theoretical basis for practical engineering, this paper presents numerical modelling with the finite element method of dynamic cutting processes under different UHFV loads. The cutting force, mechanical specific energy (MSE), rock failure mode, and crack propagation process of a heterogeneous rock with natural cracks are analysed, and then compared with the steady load cutting condition. The simulation results indicate that when the excitation frequency is close to the natural frequency of the rock (approximately 25–30 kHz), the MSE and cutting force reach the minimum value. Compared with the steady load, the average cutting force and MSE under a 25 kHz UHFV load decreased by 49.4% and 28.5%, respectively. The number of cracks increased by 24.9%, while the crack volume and area reached the maximum. In addition, the shear crack ratio can be reduced under UHFV loads. The proportion of shear cracks in 25 kHz UHFV cutting was 5.3% lower than that in steady load cutting. Thus, axial UHFV-assisted drilling can effectively improve the rock-breaking efficiency by adjusting the magnitude of the excitation frequency. The results provide a theoretical basis for the new rock-breaking technology of PDC bit drilling.



中文翻译:

单PDC刀具轴向超高频振动辅助钻的破岩机理分析

结合多晶金刚石紧密钻头和旋转超声加工技术的轴向超高频振动(UHFV)辅助钻井技术有望提高破岩效率并降低深井和超深井的钻井成本。为了更好地理解UHFV载荷下的岩石破碎机理,并为实际工程提供理论依据,本文采用有限元方法对不同UHFV载荷下的动态切削过程进行数值模拟。分析了天然裂纹非均质岩石的切削力,机械比能(MSE),岩石破坏模式和裂纹扩展过程,并与稳态载荷切削条件进行了比较。仿真结果表明,当激发频率接近岩石的固有频率(大约25–30 kHz)时,MSE和切削力达到最小值。与稳定负载相比,在25 kHz UHFV负载下的平均切削力和MSE分别降低了49.4%和28.5%。裂纹数量增加了24.9%,而裂纹的数量和面积达到了最大值。此外,在UHFV载荷下可以降低剪切裂纹率。在25 kHz UHFV切削中,剪切裂纹的比例比在稳定载荷切削中的剪切裂纹比例低5.3%。因此,轴向UHFV辅助钻孔可以通过调节激励频率的大小来有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。MSE和切削力达到最小值。与稳定负载相比,在25 kHz UHFV负载下的平均切削力和MSE分别降低了49.4%和28.5%。裂纹数量增加了24.9%,而裂纹的数量和面积达到了最大值。此外,在UHFV载荷下可以降低剪切裂纹率。在25 kHz UHFV切削中,剪切裂纹的比例比在稳定载荷切削中的剪切裂纹比例低5.3%。因此,轴向UHFV辅助钻孔可以通过调节激励频率的大小来有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。MSE和切削力达到最小值。与稳定负载相比,在25 kHz UHFV负载下的平均切削力和MSE分别降低了49.4%和28.5%。裂纹数量增加了24.9%,而裂纹的数量和面积达到了最大值。此外,在UHFV载荷下可以降低剪切裂纹率。在25 kHz UHFV切削中,剪切裂纹的比例比在稳定载荷切削中的剪切裂纹比例低5.3%。因此,轴向UHFV辅助钻孔可以通过调节激励频率的大小来有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。分别为5%。裂纹数量增加了24.9%,而裂纹的数量和面积达到了最大值。此外,在UHFV载荷下可以降低剪切裂纹率。在25 kHz UHFV切削中,剪切裂纹的比例比在稳定载荷切削中的剪切裂纹比例低5.3%。因此,轴向UHFV辅助钻孔可以通过调节激励频率的大小来有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。分别为5%。裂纹数量增加了24.9%,而裂纹的数量和面积达到了最大值。此外,在UHFV载荷下可以降低剪切裂纹率。在25 kHz UHFV切削中,剪切裂纹的比例比在稳定载荷切削中的剪切裂纹比例低5.3%。因此,轴向UHFV辅助钻孔可以通过调节激励频率的大小来有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。通过调节激励频率的大小,轴向UHFV辅助钻孔可以有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。通过调节激励频率的大小,轴向UHFV辅助钻孔可以有效地提高破岩效率。研究结果为新型的PDC钻头破岩技术提供了理论依据。

更新日期:2021-05-08
down
wechat
bug