当前位置: X-MOL 学术J. Ind. Microbiol. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterizing Escherichia coli's transcriptional response to different styrene exposure modes reveals novel toxicity and tolerance insights.
Journal of Industrial Microbiology & Biotechnology ( IF 3.2 ) Pub Date : 2021-04-30 , DOI: 10.1093/jimb/kuab019
Michael Machas 1 , Gavin Kurgan 2 , Omar A Abed 1 , Alyssa Shapiro 3 , Xuan Wang 2 , David Nielsen 1
Affiliation  

The global transcriptional response of Escherichia coli to styrene and potential influence of exposure source was determined by performing RNA sequencing (RNA-seq) analysis on both styrene-producing and styrene-exposed cells. In both cases, styrene exposure appears to cause both cell envelope and DNA damage, to which cells respond by down-regulating key genes/pathways involved in DNA replication, protein production, and cell wall biogenesis. Among the most significantly up-regulated genes were those involved with phage shock protein response (e.g. pspABCDE/G), general stress regulators (e.g. marA, rpoH), and membrane-altering genes (notably, bhsA, ompR, ldtC), whereas efflux transporters were, surprisingly, unaffected. Subsequent studies with styrene addition demonstrate how strains lacking ompR [involved in controlling outer membrane (OM) composition/osmoregulation] or any of tolQ, tolA, or tolR (involved in OM constriction) each displayed over 40% reduced growth relative to wild-type. Conversely, despite reducing basal fitness, overexpression of plsX (involved in phospholipid biosynthesis) led to 70% greater growth when styrene exposed. These collective differences point to the likely importance of OM properties in controlling native styrene tolerance. Overall, the collective behaviours suggest that, regardless of source, prolonged exposure to inhibitory styrene levels causes cells to shift from'growth mode' to 'survival mode', redistributing cellular resources to fuel native tolerance mechanisms.

中文翻译:

表征大肠杆菌对不同苯乙烯暴露模式的转录反应揭示了新的毒性和耐受性见解。

通过对产生苯乙烯的细胞和暴露于苯乙烯的细胞进行RNA测序(RNA-seq)分析,确定了大肠杆菌对苯乙烯的整体转录反应和暴露源的潜在影响。在这两种情况下,苯乙烯暴露似乎都会引起细胞包膜和DNA损伤,细胞通过下调涉及DNA复制,蛋白质生产和细胞壁生物发生的关键基因/途径来对细胞作出反应。上调最明显的基因是与噬菌体休克蛋白应答有关的基因(例如pspABCDE / G),一般应激调节物(例如marA,rpoH)和膜改变基因(尤其是bhsA,ompR,ldtC),而外排令人惊讶的是,转运蛋白并未受到影响。随后的苯乙烯添加研究表明,缺乏ompR [涉及控制外膜(OM)组成/渗透调节]或tolQ,tolA或tolR(涉及OM收缩)的菌株相对于野生型如何分别表现出40%以上的减缓生长。相反,尽管降低了基础适应性,但当苯乙烯暴露时,plsX的过度表达(参与磷脂的生物合成)导致其增长了70%。这些共同的差异表明OM性能在控制天然苯乙烯耐受性方面的重要性。总体而言,集体行为表明,不论来源如何,长时间暴露于抑制性苯乙烯水平都会导致细胞从“生长模式”转变为“存活模式”,从而重新分配细胞资源以促进天然的耐受机制。或tolR(涉及OM收缩)相对于野生型而言,均显示出40%以上的生长减少。相反,尽管降低了基础适应性,但当苯乙烯暴露时,plsX的过度表达(参与磷脂的生物合成)导致其增长了70%。这些共同的差异表明OM性能在控制天然苯乙烯耐受性方面的重要性。总体而言,集体行为表明,不论来源如何,长时间暴露于抑制性苯乙烯水平都会导致细胞从“生长模式”转变为“存活模式”,从而重新分配细胞资源以促进天然的耐受机制。或tolR(涉及OM收缩)相对于野生型而言,均显示出40%以上的生长减少。相反,尽管降低了基础适应性,但当苯乙烯暴露时,plsX的过度表达(参与磷脂的生物合成)导致其增长了70%。这些共同的差异表明OM性能在控制天然苯乙烯耐受性方面的重要性。总体而言,集体行为表明,不论来源如何,长时间暴露于抑制性苯乙烯水平都会导致细胞从“生长模式”转变为“存活模式”,从而重新分配细胞资源以促进天然的耐受机制。暴露于苯乙烯时,plsX的过度表达(参与磷脂的生物合成)导致生长增加70%。这些共同的差异表明OM性能在控制天然苯乙烯耐受性方面的重要性。总体而言,集体行为表明,不论来源如何,长时间暴露于抑制性苯乙烯水平都会导致细胞从“生长模式”转变为“存活模式”,从而重新分配细胞资源以促进天然的耐受机制。暴露于苯乙烯时,plsX的过表达(参与磷脂的生物合成)导致其增长70%。这些共同的差异表明OM性能在控制天然苯乙烯耐受性方面的重要性。总体而言,集体行为表明,不论来源如何,长时间暴露于抑制性苯乙烯水平都会导致细胞从“生长模式”转变为“存活模式”,从而重新分配细胞资源以促进天然的耐受机制。
更新日期:2021-04-30
down
wechat
bug