当前位置: X-MOL 学术Int. J. Biometeorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supplement foreword Phenology 2018: One planet, two hemispheres, many regions
International Journal of Biometeorology ( IF 3.2 ) Pub Date : 2021-01-18 , DOI: 10.1007/s00484-021-02078-0
Marie R Keatley 1
Affiliation  

The influence that climate has on natural and managed systems and the rhythm that it imposes (Helm et al. 2013; Visser et al. 2010) on the timing of plants and animals’ key life stages—such as flowering, fruiting, and migration—has been noted since ancient times (Aitken 1974; Woodward and McTaggart 2019). These life stages, in turn, drive a wide range of processes at the community and population levels, at local and regional spatial scales. Phenology is the study of these rhythms and processes (Lieth 1974). Phenological studies have featured in the International Journal of Biometeorology from the late 1950s—the decade in which it was first published (Donnelly and Yu 2017; Sheridan and Allen 2017). However, from the late 1990s, phenological studies were a significant theme (Donnelly and Yu 2017; Sheridan and Allen 2017), as evidence for and concerns about changes to the global climate system grew. The papers in this supplement consider climate change and are based on the international conference “Phenology 2018: One planet, two hemispheres, many regions” which was held in Melbourne, Australia. This was the fifth international meeting focusing on phenology (Donnelly et al. 2011; Schwartz and Donnelly 2014; Menzel 2000; Chmielewski 2015), supported by the International Society of Biometeorology. As with each of the conferences, the integrative approach within phenology (Schwartz 2013) is highlighted. At this conference, there were 100 delegates from 30 countries representing many different disciplines (e.g., ecologists, foresters, geographers, health scientists, horticulturists, modelers, meteorologists, statisticians). The topics addressed were across the following themes: aerobiology, agricultural phenology, phenological methods, phenology and citizen science, phenology and conservation biology, remote sensing, traditional ecological knowledge, tropical phenology, and urban phenology. Although each of the themes are relevant to plants and animals, the conference was clearly plant and vegetation focused (Fig. 1). The final selected papers reflect this. Recognizing that studies on shrubs are limited, despite the role that they play in ecosystem function (e.g., carbon storage, habitat, soil stability), Donnelly and Yu (2021) undertook a review to identify research and knowledge gaps in the phenology of shrubs in deciduous, temperate forests. Their findings reinforce the lack of studies, with only 32 papers meeting their criteria. All the studies occurred in the Northern Hemisphere, with 21 being from the USA. The majority (> 70%) used data that had been collected by direct observation and involved the study of invasive species, with one species Amur honeysuckle (Lonicera maackii) featuring prominently. The authors advocate for a greater geographical range for monitoring of shrub and tree phenology together—given their interrelationship and combined contribution to forest ecosystem functioning. In addition, they make six recommendations for future research, including quantifying the length of time between leaf out and fall for shrubs and trees and the implications that change in tree leafing has for shrubs. Moving from the understory to the canopy, Denéchère et al. (2021) note that individuals and their traits contribute to populations, but as with shrub phenology, they observe that within-population variability is not well studied. Hence, they examine the within-population variability (defined by standard variation) of leaf budburst and senescence of nine species variously distributed across four countries (England, France, Germany, and Romania). Species was a contributing factor to variation in both budburst and senescence. They found that warmer spring temperatures reduced the within-population variability in budburst, as development was faster. Conversely, later occurrence of senescence and warmer temperature resulted in greater variation. The authors determined that a sample size of 28 for budburst and 23 for leaf * Marie R Keatley mrk@unimelb.edu.au

中文翻译:

补充前言 物候学2018:一颗行星,两个半球,多区域

气候对自然和管理系统的影响及其对植物和动物关键生命阶段(例如开花、结果和迁徙)时间的影响(Helm 等人,2013 年;Visser 等人,2010 年)。自古以来就被注意到(Aitken 1974;Woodward 和 McTaggart 2019)。反过来,这些生命阶段在社区和人口层面、地方和区域空间尺度上推动了广泛的过程。物候学是对这些节奏和过程的研究(Lieth 1974)。从 1950 年代后期开始,《国际生物气象学杂志》(International Journal of Biometeorology) 就已经刊登了物候研究——这也是它首次出版的十年(Donnelly 和 Yu 2017;Sheridan 和 Allen 2017)。然而,从 1990 年代后期开始,物候研究是一个重要主题(Donnelly 和 Yu 2017;Sheridan 和 Allen 2017),随着全球气候系统变化的证据和担忧的增加。本增刊中的论文考虑了气候变化,基于在澳大利亚墨尔本举行的“2018 年物候学:一个星球,两个半球,许多地区”国际会议。这是第五次关注物候学的国际会议(Donnelly et al. 2011; Schwartz and Donnelly 2014; Menzel 2000; Chmielewski 2015),得到了国际生物气象学会的支持。与每次会议一样,物候学中的综合方法(Schwartz 2013)得到强调。在这次会议上,有来自 30 个国家的 100 名代表,代表了许多不同学科(例如,生态学家、林业学家、地理学家、健康科学家、园艺学家、建模师、气象学家、统计学家)。讨论的主题涵盖以下主题:空气生物学、农业物候学、物候方法、物候学和公民科学、物候学和保护生物学、遥感、传统生态知识、热带物候学和城市物候学。尽管每个主题都与植物和动物相关,但会议显然以植物和植被为重点(图 1)。最终选定的论文反映了这一点。Donnelly 和 Yu (2021) 认识到尽管灌木在生态系统功能(例如碳储存、栖息地、土壤稳定性)中发挥作用,但对它们的研究是有限的,因此进行了一项审查,以确定灌木物候学中的研究和知识差距落叶、温带森林。他们的发现强化了研究的缺乏,只有 32 篇论文符合他们的标准。所有研究都在北半球进行,其中 21 项来自美国。大多数(> 70%)使用通过直接观察收集的数据,并涉及入侵物种的研究,其中一个物种阿穆尔金银花(Lonicera maackii)尤为突出。鉴于灌木和树木物候的相互关系和对森林生态系统功能的共同贡献,作者主张扩大地理范围以同时监测灌木和树木物候。此外,他们为未来的研究提出了六项建议,包括量化灌木和树木从落叶到落叶之间的时间长度,以及树叶变化对灌木的影响。从林下到树冠,Denéchère 等人。(2021) 注意到个体及其特征对种群有贡献,但与灌木物候一样,他们观察到人口内的变异性没有得到很好的研究。因此,他们研究了分布在四个国家(英国、法国、德国和罗马尼亚)的九个物种的叶芽萌发和衰老的种群内变异性(由标准变异定义)。物种是导致萌芽和衰老变化的一个因素。他们发现,由于发育更快,春季温度升高降低了芽孢的种群内变异性。相反,较晚发生的衰老和较高的温度导致更大的变化。作者确定萌芽和叶的样本大小分别为 28 个和 23 个 * Marie R Keatley mrk@unimelb.edu.au 他们检查了分布在四个国家(英国、法国、德国和罗马尼亚)的九个物种的叶芽萌发和衰老的种群内变异性(由标准变异定义)。物种是导致萌芽和衰老变化的一个因素。他们发现,由于发育更快,春季温度升高降低了芽孢的种群内变异性。相反,较晚发生的衰老和较高的温度导致更大的变化。作者确定萌芽和叶的样本大小分别为 28 个和 23 个 * Marie R Keatley mrk@unimelb.edu.au 他们检查了分布在四个国家(英国、法国、德国和罗马尼亚)的九个物种的叶芽萌发和衰老的种群内变异性(由标准变异定义)。物种是导致萌芽和衰老变化的一个因素。他们发现,由于发育更快,春季温度升高降低了芽孢的种群内变异性。相反,较晚发生的衰老和较高的温度导致更大的变化。作者确定萌芽和叶的样本大小分别为 28 个和 23 个 * Marie R Keatley mrk@unimelb.edu.au 他们发现,由于发育更快,春季温度升高降低了芽孢的种群内变异性。相反,较晚发生的衰老和较高的温度导致更大的变化。作者确定萌芽和叶的样本大小分别为 28 个和 23 个 * Marie R Keatley mrk@unimelb.edu.au 他们发现,由于发育更快,春季温度升高降低了芽孢的种群内变异性。相反,较晚发生的衰老和较高的温度导致更大的变化。作者确定萌芽和叶的样本大小分别为 28 个和 23 个 * Marie R Keatley mrk@unimelb.edu.au
更新日期:2021-01-18
down
wechat
bug