当前位置: X-MOL 学术IEEE Trans. Neural Netw. Learn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Sufficient Condition for Solving the Gap-Filling Problem Using Deep Convolutional Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems ( IF 10.4 ) Pub Date : 2021-04-26 , DOI: 10.1109/tnnls.2021.3072746
Felix Peppert , Max von Kleist , Christof Schutte , Vikram Sunkara

Deep convolutional neural networks (DCNNs) are routinely used for image segmentation of biomedical data sets to obtain quantitative measurements of cellular structures like tissues. These cellular structures often contain gaps in their boundaries, leading to poor segmentation performance when using DCNNs like the U-Net. The gaps can usually be corrected by post-hoc computer vision (CV) steps, which are specific to the data set and require a disproportionate amount of work. As DCNNs are Universal Function Approximators, it is conceivable that the corrections should be obsolete by selecting the appropriate architecture for the DCNN. In this article, we present a novel theoretical framework for the gap-filling problem in DCNNs that allows the selection of architecture to circumvent the CV steps. Combining information-theoretic measures of the data set with a fundamental property of DCNNs, the size of their receptive field, allows us to formulate statements about the solvability of the gap-filling problem independent of the specifics of model training. In particular, we obtain mathematical proof showing that the maximum proficiency of filling a gap by a DCNN is achieved if its receptive field is larger than the gap length. We then demonstrate the consequence of this result using numerical experiments on a synthetic and real data set and compare the gap-filling ability of the ubiquitous U-Net architecture with variable depths. Our code is available at https://github.com/ai-biology/dcnn-gap-filling.

中文翻译:

利用深度卷积神经网络解决间隙填充问题的充分条件

深度卷积神经网络(DCNN)通常用于生物医学数据集的图像分割,以获得对组织等细胞结构的定量测量。这些细胞结构通常在其边界中包含间隙,从而在使用像U-Net这样的DCNN时导致较差的分割性能。通常可以通过事后计算机视觉(CV)步骤纠正差距,这些步骤特定于数据集,并且需要不成比例的工作量。由于DCNN是通用函数逼近器,因此可以想象,通过为DCNN选择适当的体系结构,可以避免进行更正。在本文中,我们为DCNN中的间隙填充问题提供了一种新颖的理论框架,该框架允许选择体系结构来规避CV步骤。将数据集的信息理论方法与DCNNs的基本属性(其接收区域的大小)相结合,使我们能够独立于模型训练的细节而制定关于缺口填补问题可解性的陈述。特别是,我们获得了数学证明,表明如果DCNN的接收场大于间隙长度,则可以最大程度地填充DCNN。然后,我们使用合成和真实数据集上的数值实验演示了此结果的结果,并比较了随深度变化而无处不在的U-Net体系结构的填充能力。我们的代码可从https://github.com/ai-biology/dcnn-gap-filling获得。使我们能够独立于模型训练的细节而制定有关填补缺口问题的可解决性的陈述。特别是,我们获得了数学证明,表明如果DCNN的接收场大于间隙长度,则可以最大程度地填充DCNN。然后,我们使用合成和真实数据集上的数值实验演示了此结果的结果,并比较了随深度变化而无处不在的U-Net体系结构的填充能力。我们的代码可从https://github.com/ai-biology/dcnn-gap-filling获得。使我们能够独立于模型训练的细节而制定有关填补缺口问题的可解决性的陈述。特别是,我们获得了数学证明,表明如果DCNN的接收场大于间隙长度,则可以最大程度地填充DCNN。然后,我们使用合成和真实数据集上的数值实验演示了此结果的结果,并比较了随深度变化而无处不在的U-Net体系结构的填充能力。我们的代码可从https://github.com/ai-biology/dcnn-gap-filling获得。然后,我们使用合成和真实数据集上的数值实验演示了此结果的结果,并比较了随深度变化而无处不在的U-Net体系结构的填充能力。我们的代码可从https://github.com/ai-biology/dcnn-gap-filling获得。然后,我们使用合成和真实数据集上的数值实验演示了此结果的结果,并比较了随深度变化而无处不在的U-Net体系结构的填充能力。我们的代码可从https://github.com/ai-biology/dcnn-gap-filling获得。
更新日期:2021-04-26
down
wechat
bug