当前位置: X-MOL 学术IEEE Trans. Pattern Anal. Mach. Intell. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019.
IEEE Transactions on Pattern Analysis and Machine Intelligence ( IF 20.8 ) Pub Date : 2021-04-23 , DOI: 10.1109/tpami.2021.3075372
Zhengying Liu , Adrien Pavao , Zhen Xu , Sergio Escalera , Fabio Ferreira , Isabelle Guyon , Sirui Hong , Frank Hutter , Rongrong Ji , Julio C. S. Jacques Junior , Ge Li , Marius Lindauer , Zhipeng Luo , Meysam Madadi , Thomas Nierhoff , Kangning Niu , Chunguang Pan , Danny Stoll , Sebastien Treguer , Jin Wang , Peng Wang , Chenglin Wu , Youcheng Xiong , Arber Zela , Yang Zhang

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a '`meta-learner'', '`data ingestor'', '`model selector'', '`model/learner'', and '`evaluator''. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free 'AutoDL self-service''.

中文翻译:

ChaLearn AutoDL Challenge 2019的获奖解决方案和挑战后分析。

本文报告了ChaLearn的AutoDL挑战系列的结果和挑战后分析,该系列有助于整理出在多种环境中引入的大量用于深度学习(DL)的AutoML解决方案,但缺乏公平的比较。所有输入数据形式(时间序列,图像,视频,文本,表格)都被格式化为张量,并且所有任务都是多标签分类问题。代码提交是在隐藏的任务上执行的,具有有限的时间和计算资源,从而推动了可以快速获得结果的解决方案。在这种情况下,尽管流行的神经体系结构搜索(NAS)不切实际,但DL方法仍占主导地位。解决方案依赖于经过微调的预训练网络,其架构与数据模态相匹配。挑战后测试未显示超出规定的时间限制的改进。尽管没有哪个组件特别新颖或新颖,但出现了一个高级模块化组织,具有“元学习器”,“数据摄取器”,“模型选择器”,“模型/学习器”和“`”。评估者''。这种模块化特性使消融研究成为可能,这揭示了(平台外)元学习,集成和有效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(局部)最优性。我们面临的挑战遗产包括持久的基准测试(http://autodl.chalearn.org),获奖者的开源代码以及免费的“ AutoDL自助服务”。模型选择器”,“模型/学习器”和“评估器”。这种模块化特性使消融研究成为可能,这揭示了(平台外)元学习,集成和有效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(局部)最优性。我们面临的挑战遗产包括持久的基准测试(http://autodl.chalearn.org),获奖者的开源代码以及免费的“ AutoDL自助服务”。模型选择器”,“模型/学习器”和“评估器”。这种模块化特性使消融研究成为可能,这揭示了(平台外)元学习,集成和有效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(局部)最优性。我们面临的挑战遗产包括持久的基准测试(http://autodl.chalearn.org),获奖者的开源代码以及免费的“ AutoDL自助服务”。
更新日期:2021-04-23
down
wechat
bug