当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element simulation of cochlear traveling wave under air and bone conduction hearing
Biomechanics and Modeling in Mechanobiology ( IF 3.0 ) Pub Date : 2021-03-30 , DOI: 10.1007/s10237-021-01443-7
Liu-Jie Ren 1, 2 , Yi Yu 3 , Yan-Qing Fang 1 , Cheng Hua 3 , Pei-Dong Dai 1 , Tian-Yu Zhang 1, 2
Affiliation  

Besides the normal hearing pathway known as air conduction (AC), sound can also transmit to the cochlea through the skull, known as bone conduction (BC). During BC stimulation, the cochlear walls demonstrate rigid body motion (RBM) and compressional motion (CPM), both inducing the basilar membrane traveling wave (TW). Despite numerous measuring and modeling efforts for the TW phenomenon, the mechanism remains unclear, especially in the case of BC. This paper proposes a 3D finite element cochlea model mimicking the TW under BC. The model uses a traditional “box model” form, but in a spiral shape, with two fluid chambers separated by the long and flexible BM. The cochlear fluid was enclosed by bony walls, the oval and round window membranes. Contingent boundary conditions and stimulations are introduced according to the physical basis of AC and BC. Particularly for BC, both RBM and CPM of the cochlea walls are simulated. Harmonic numerical solutions are obtained at multiple frequencies among the hearing range. The BM vibration amplitude (\(U_{{{\text{BM}}}}\)) and its relation with volume displacement difference between the oval and round windows \((\Delta {\text{Vol}})\), as well as the pressure difference at the base of the cochlea (\(P_{{{\text{SV}}}} \left( 0 \right) - P_{{{\text{ST}}}} \left( 0 \right)\)), are analyzed. The simulated BM response at 12 mm from the base is peaked at about 3 k Hz, which is consistent with published experimental data. The TW properties under AC and BC are the same and have a common mechanism. (1) \(U_{{{\text{BM}}}}\) is proportional to \({\Delta }Vol\) at low frequencies. (2) \(U_{{{\text{BM}}}}\) is also proportional to \(P_{{{\text{SV}}}} \left( 0 \right) - P_{{{\text{ST}}}} \left( 0 \right)\), within 5 dB error at high frequencies such as 16 k Hz. This study partly reveals the common quantitative relations between the TW and related factors under AC and BC hearing.



中文翻译:

气导和骨导听力下耳蜗行波的有限元模拟

除了被称为空气传导 (AC) 的正常听力通路外声音还可以通过颅骨传递到耳蜗,称为骨传导 (BC)。在 BC 刺激期间,耳蜗壁表现出刚体运动 (RBM) 和压缩运动 (CPM),两者都诱导基底膜行波 (TW)。尽管对 TW 现象进行了大量的测量和建模工作,但其机制仍不清楚,尤其是在 BC 的情况下。本文提出了一种模拟 BC 下 TW 的 3D 有限元耳蜗模型。该模型采用传统的“盒子模型”形式,但呈螺旋形,两个流体室由长而灵活的 BM 隔开。耳蜗液被骨壁、椭圆形和圆形窗膜包围。根据 AC 和 BC 的物理基础引入条件边界条件和刺激。特别是对于 BC,模拟了耳蜗壁的 RBM 和 CPM。在听力范围内的多个频率处获得谐波数值解。BM 振幅 (\(U_{{{\text{BM}}}}\) ) 及其与椭圆形和圆形窗口之间体积位移差异的关系\((\Delta {\text{Vol}})\),以及耳蜗底部的压力差 ( \(P_{{{\text{SV}}}} \left( 0 \right) - P_{{{\text{ST}}}} \left( 0 \right) \) ),进行分析。距底座 12 mm 处的模拟 BM 响应在约 3 k Hz 处达到峰值,这与已发表的实验数据一致。AC 和 BC 下的 TW 属性相同,具有共同的机制。(1) \(U_{{{\text{BM}}}} \)在低频时与\({\Delta }Vol\)成正比。(2) \(U_{{{\text{BM}}}}\)也与\(P_{{{\text{SV}}}} \left( 0 \right) - P_{{{\text{ST}}}} \left( 0 \right)\),高时误差在 5 dB 以内频率,例如 16 k Hz。本研究部分揭示了 AC 和 BC 听力下 TW 与相关因素之间的共同定量关系。

更新日期:2021-03-30
down
wechat
bug