当前位置: X-MOL 学术Build. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A probabilistic model to evaluate the effectiveness of main solutions to COVID-19 spreading in university buildings according to proximity and time-based consolidated criteria
Building Simulation ( IF 6.1 ) Pub Date : 2021-02-27 , DOI: 10.1007/s12273-021-0770-2
Marco D'Orazio 1 , Gabriele Bernardini 1 , Enrico Quagliarini 1
Affiliation  

University buildings are one of the most relevant closed environments in which the COVID-19 event clearly pointed out stakeholders’ needs toward safety issues, especially because of the possibility of day-to-day presences of the same users (i.e. students, teachers) and overcrowding causing long-lasting contacts with possible “infectors”. While waiting for the vaccine, as for other public buildings, policy-makers’ measures to limit virus outbreaks combine individual’s strategies (facial masks), occupants’ capacity and access control. But, up to now, no easy-to-apply tools are available for assessing the punctual effectiveness of such measures. To fill this gap, this work proposes a quick and probabilistic simulation model based on consolidated proximity and exposure-time-based rules for virus transmission confirmed by international health organizations. The building occupancy is defined according to university scheduling, identifying the main “attraction areas” in the building (classrooms, break-areas). Scenarios are defined in terms of occupants’ densities and the above-mentioned mitigation strategies. The model is calibrated on experimental data and applied to a relevant university building. Results demonstrate the model capabilities. In particular, it underlines that if such strategies are not combined, the virus spreading can be limited by only using high protection respiratory devices (i.e. FFP3) by almost every occupant. On the contrary, the combination between access control and building capacity limitation can lead to the adoption of lighter protective devices (i.e. surgical masks), thus improving the feasibility, users’ comfort and favorable reception. Simplified rules to combine acceptable mask filters-occupants’ density are thus provided to help stakeholders in organizing users’ presences in the building during the pandemic.



中文翻译:


一种概率模型,用于根据邻近性和基于时间的综合标准评估大学建筑中 COVID-19 传播主要解决方案的有效性



大学建筑是最相关的封闭环境之一,COVID-19 事件清楚地指出了利益相关者对安全问题的需求,特别是因为同一用户(即学生、教师)和其他用户可能每天都在大学建筑中。过度拥挤导致与可能的“感染者”长期接触。在等待疫苗的同时,与其他公共建筑一样,政策制定者限制病毒爆发的措施结合了个人的策略(口罩)、居住者的能力和出入控制。但到目前为止,还没有易于应用的工具来评估此类措施的准时有效性。为了填补这一空白,这项工作提出了一种快速的概率模拟模型,该模型基于国际卫生组织确认的病毒传播的综合接近度和暴露时间规则。建筑物的占用情况是根据大学的日程安排确定的,确定建筑物中的主要“吸引力区域”(教室、休息区)。情景是根据居住者密度和上述缓解策略来定义的。该模型根据实验数据进行校准,并应用于相关大学建筑。结果证明了模型的能力。特别是,它强调,如果不结合这些策略,几乎每个居住者仅使用高防护呼吸装置(即FFP3)就可以限制病毒传播。相反,门禁与建筑容量限制的结合可以导致采用更轻的防护设备(即外科口罩),从而提高可行性、用户的舒适度和良好的接受度。 因此,提供了结合可接受的口罩过滤器-居住密度的简化规则,以帮助利益相关者在大流行期间组织用户在建筑物中的存在。

更新日期:2021-02-27
down
wechat
bug