当前位置: X-MOL 学术J. Soil Water Conserv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar
Journal of Soil and Water Conservation ( IF 2.2 ) Pub Date : 2021-05-01 , DOI: 10.2489/jswc.2021.00155
R. Wang , P. Gao , E. Zhou , Y. Li , G. Zhao

The accurate detection of the volume of the soil wetted body (SWB) is the theoretical basis for the optimal design of a drip irrigation system. In view of the shortcomings of traditional detection methods, such as low efficiency, high cost, and poor in situ detection, this paper explores the rapid, in situ, and nondestructive estimation techniques of SWB volume using Ground Penetrating Radar (GPR). Through drip irrigation of different water volumes and geotechnical experiments, the SWBs with different sizes were formed in air-dried soil and natural soil, respectively. The GPR scan lines on the ground were arranged to obtain the SWB radargram, and the profile shape of the wetted body was restored by the F-K transformation process (frequency-wave domain migration algorithm) that can transform the wave equation in the time-space domain into the frequency-wavenumber domain to achieve offset homing. On this basis, the SWB volume estimation model was constructed by three methods: regression analysis, geometric calculation, and profile triple integration (profile area accumulation). Additionally, the accuracies of the models were verified by the measured data of the SWB excavation. For each of these methodologies, we illustrate the quality of the output with the measured data and discuss the possibilities and limitations. The results show that the profile triple integration model is not accurate. The regression analysis model has the greatest accuracy. However, owing to the difference in soil characteristics, the model input parameters must be changed. Relatively, the geometric calculation model is the best model to detect the SWB volume. From the results, we can draw a conclusion that the method combining F-K transformation process and the geometric calculation model can accurately measure the volume of SWB, and it has better adaptability in different soils. We demonstrate the GPR as a rapid geophysical tool that can be used successfully to explore the volume of the SWB formed under drip irrigation. This study expands the agricultural application of GPR and provides a new method for in situ nondestructive rapid detections of the SWB volume.

中文翻译:

探地雷达对滴灌土壤湿润体体积的实验检测

准确检测土壤湿润体(SWB)的体积是优化滴灌系统设计的理论基础。鉴于传统检测方法效率低,成本高,原位检测效果差等缺点,本文探讨了探地雷达(GPR)对SWB体积的快速,原位和无损估计技术。通过不同水量的滴灌和岩土试验,在风干土壤和天然土壤中分别形成了大小不同的SWB。安排地面上的GPR扫描线以获得SWB雷达图,并通过FK变换过程(频率-波域迁移算法)恢复了润湿体的轮廓形状,该过程可以将时空域中的波动方程转换为频率-波数域,从而实现偏移归位。在此基础上,通过三种方法构建了SWB体积估算模型:回归分析,几何计算和轮廓三重积分(轮廓面积累积)。此外,通过SWB开挖的实测数据验证了模型的准确性。对于这些方法中的每一种,我们都会用测量的数据说明输出的质量,并讨论可能性和局限性。结果表明,配置文件三重集成模型是不准确的。回归分析模型具有最高的准确性。然而,由于土壤特性的差异,必须更改模型输入参数。相对而言,几何计算模型是检测SWB量的最佳模型。从结果可以得出结论,结合FK变换过程和几何计算模型的方法可以准确测量SWB的体积,在不同土壤中具有较好的适应性。我们证明了GPR是一种快速的地球物理工具,可以成功地用于探究在滴灌条件下形成的SWB的体积。这项研究扩展了GPR在农业上的应用,并为SWB量的原位无损快速检测提供了一种新方法。从结果可以得出结论,结合FK变换过程和几何计算模型的方法可以准确测量SWB的体积,在不同土壤中具有较好的适应性。我们证明了GPR是一种快速的地球物理工具,可以成功地用于探究在滴灌条件下形成的SWB的体积。这项研究扩展了GPR在农业上的应用,并为SWB量的原位无损快速检测提供了一种新方法。从结果可以得出结论,结合FK变换过程和几何计算模型的方法可以准确测量SWB的体积,在不同土壤中具有较好的适应性。我们证明了GPR是一种快速的地球物理工具,可以成功地用于探究在滴灌条件下形成的SWB的体积。这项研究扩展了GPR在农业上的应用,并为SWB量的原位无损快速检测提供了一种新方法。我们证明了GPR是一种快速的地球物理工具,可以成功地用于探究在滴灌条件下形成的SWB的体积。这项研究扩展了GPR在农业上的应用,并为SWB量的原位无损快速检测提供了一种新方法。我们证明了GPR是一种快速的地球物理工具,可以成功地用于探究在滴灌条件下形成的SWB的体积。这项研究扩展了GPR在农业上的应用,并为SWB量的原位无损快速检测提供了一种新方法。
更新日期:2021-05-07
down
wechat
bug