当前位置: X-MOL 学术Ocean Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
“Grey swan” storm surges pose a greater coastal flood hazard than climate change
Ocean Dynamics ( IF 2.3 ) Pub Date : 2021-05-07 , DOI: 10.1007/s10236-021-01453-0
Kevin Horsburgh , Ivan D. Haigh , Jane Williams , Michela De Dominicis , Judith Wolf , Addina Inayatillah , David Byrne

In this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world experience storm surges driven by mid-latitude weather systems. Our approach could therefore be adopted more widely to identify physically plausible, low probability, potentially catastrophic coastal flood events and to assist with major incident planning.



中文翻译:

“灰天鹅”风暴潮比气候变化对沿海洪灾的危害更大

在本文中,我们表明,在未来几十年中,中纬度风暴系统的自然变异性可能是沿海极端海平面的重要驱动力,而不是平均海平面上升或气候引起的暴风性变化。由于其突发性,局部海平面响应的变化以及我们的短时观测记录,了解风暴潮的自然变化至少与了解由于全球变暖导致的预计长期平均海平面变化同等重要。以2013年12月的北大西洋Storm Xaver为基准,我们使用了气象预报修改工具来创建“灰天鹅”事件,同时保持了风暴系统的关键物理特性。在这里,我们将“灰天鹅”定义为意味着一个事件,该事件基于自然变异性而被预料到,但不在观测记录之内。对于这些合成的风暴事件中的每一个,我们使用通常在运行预测系统中使用的流体动力学模型来模拟北海的风暴潮和海浪。灰天鹅风暴产生的风暴潮比2013年12月事件在英国东海岸所有已分析的潮位计地点所经历的风暴潮始终更高。在我们的模拟中获得的额外风暴潮高度可与欧洲海岸线2100年的高端预计平均海平面上升相提并论。我们的结果强烈表明,中纬度风暴可能会产生自然变化,从而产生比以往任何时候都更多的极端风暴潮和海浪。我们证实了先前的观察结果,即通过降低风暴的运动速度,可以在半封闭的盆地中引起更多的极端风暴潮,并且就风暴传播速度的降低提供了一种新颖的解释,从而可以对接近平衡进行动力响应。我们没有发现海岸的最大波高有任何重大变化,变化主要限于更深的水域。世界上许多其他地区都遇到由中纬度天气系统驱动的风暴潮。因此,我们的方法可以被更广泛地采用,以识别物理上合理的,低概率的,潜在的灾难性沿海洪水事件,并协助进行重大事件规划。我们就风暴传播速度较慢提供了一种新颖的解释,从而使动力响应能够逼近平衡。我们没有发现海岸的最大波高有任何重大变化,变化主要限于更深的水域。世界上许多其他地区都遇到由中纬度天气系统驱动的风暴潮。因此,我们的方法可以被更广泛地采用,以识别物理上合理的,低概率的,潜在的灾难性沿海洪水事件,并协助进行重大事件规划。我们就风暴传播速度较慢提供了一种新颖的解释,从而使动力响应能够逼近平衡。我们没有发现海岸的最大波高有任何重大变化,变化主要限于更深的水域。世界上许多其他地区都遇到由中纬度天气系统驱动的风暴潮。因此,我们的方法可以被更广泛地采用,以识别物理上合理的,低概率的,潜在的灾难性沿海洪水事件,并协助进行重大事件规划。世界上许多其他地区都遇到由中纬度天气系统驱动的风暴潮。因此,我们的方法可以被更广泛地采用,以识别物理上合理的,低概率的,潜在的灾难性沿海洪水事件,并协助进行重大事件规划。世界上许多其他地区都遇到由中纬度天气系统驱动的风暴潮。因此,我们的方法可以被更广泛地采用,以识别物理上合理的,低概率的,潜在的灾难性沿海洪水事件,并协助进行重大事件规划。

更新日期:2021-05-07
down
wechat
bug