当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the role of defects in Silicon Nitride-based resistive switching memories through oxygen doping
IEEE Transactions on Nanotechnology ( IF 2.1 ) Pub Date : 2021-04-14 , DOI: 10.1109/tnano.2021.3072974
Nikolaos Vasileiadis 1 , Panagiotis Karakolis 2 , Panagiotis Mandylas 3 , Vassilios Ioannou-Sougleridis 4 , Pascal Normand 5 , Michele Perego 6 , Philomela Komninou 7 , Vasileios Ntinas 8 , Iosif-Angelos Fyrigos 9 , Ioannis G. Karafyllidis 10 , Georgios Ch. Sirakoulis 11 , Panagiotis Dimitrakis 12
Affiliation  

Resistive memories are promising candidates for replacing current nonvolatile memories and realize storage class memories. Moreover, they have memristive properties, with many discrete resistance levels and implement artificial synapses. The last years researchers have demonstrated RRAM chips used as accelerators in computing, following the new in-memory and neuromorphic computational approaches. Many different metal oxides have been used as resistance switching materials in MIM structures. Understanding of the switching mechanism is very critical for the modeling and the use of memristors in different applications. Here, we demonstrate the bipolar resistance switching of silicon nitride thin films using heavily doped Si and Cu as bottom and top-electrodes respectively. Next, we dope nitride with oxygen in order to introduce and modify the intrinsic nitride defects. Analysis of the current-voltage characteristics reveal that under space-charge limited conditions and by setting the appropriate current compliance, the operation condition of the RRAM cells can be tuned. Furthermore, resistance change can be obtained using appropriate SET/RESET pulsing sequences allowing the use of the devices in computing acceleration application. Impedance spectroscopy measurements clarify the presence of different mechanisms during SET and RESET. We prove through a customized measurement set-up and the appropriate control software that the initial charge-storage in the intrinsic nitride traps governs the resistance change.

中文翻译:


通过氧掺杂了解氮化硅阻变存储器中缺陷的作用



电阻存储器是替代当前非易失性存储器并实现存储级存储器的有希望的候选者。此外,它们具有忆阻特性,具有许多离散的电阻水平并实现人工突触。去年,研究人员遵循新的内存和神经形态计算方法,展示了 RRAM 芯片用作计算加速器。许多不同的金属氧化物已被用作 MIM 结构中的电阻开关材料。了解开关机制对于忆阻器在不同应用中的建模和使用非常关键。在这里,我们演示了分别使用重掺杂硅和铜作为底部和顶部电极的氮化硅薄膜的双极电阻开关。接下来,我们用氧掺杂氮化物以引入和修改固有的氮化物缺陷。对电流-电压特性的分析表明,在空间电荷有限的条件下,通过设置适当的电流顺应性,可以调整 RRAM 单元的工作条件。此外,可以使用适当的设置/重置脉冲序列来获得电阻变化,从而允许在计算加速应用中使用该器件。阻抗谱测量阐明了 SET 和 RESET 期间不同机制的存在。我们通过定制的测量设置和适当的控制软件证明,本征氮化物陷阱中的初始电荷存储控制着电阻变化。
更新日期:2021-04-14
down
wechat
bug