当前位置: X-MOL 学术Annu. Rev. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Learning to Model G-Quadruplexes: Current Methods and Perspectives
Annual Review of Biophysics ( IF 10.4 ) Pub Date : 2021-05-06 , DOI: 10.1146/annurev-biophys-060320-091827
Iker Ortiz de Luzuriaga 1, 2 , Xabier Lopez 2, 3 , Adrià Gil3 1, 4
Affiliation  

G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.

中文翻译:


学习建模G四联体:当前方法和观点。

在过去的几年中,G-四链体对开发抗癌疗法引起了相当大的兴趣。DNA的这些非规范结构可以在端粒和/或癌基因启动子中发现,并且已经观察到这种G-四链体的稳定作用可能会干扰肿瘤细胞的生长。然而,导致这些G-四链体折叠和稳定的机制仍然没有很好的建立,它们是该领域当前许多工作的重点。在开创性工作中,观察到稳定作用是由阳离子产生的。但是,随后的研究表明,从平面和非平面有机分子到方平面和八面体金属络合物,不同种类的小分子也可能导致G四元络合物的稳定化。因此,这些小分子与G-四链体的相互作用的理解和合理化也是当前在医学应用中关注的重要主题。为了阐明文献中有关G-四链体的形成,它们的稳定性以及它们与小分子的相互作用所产生的问题,需要在实验研究和计算工作之间产生协同作用。在这篇综述中,我们主要关注计算机模拟方法,并提供了迄今为止通过不同的计算方法进行的不同领先研究的广泛汇编。我们将这些方法分为两个主要类别:以及它们与小分子的相互作用,以及实验研究和计算工作之间的协同作用。在这篇综述中,我们主要关注计算机模拟方法,并提供了迄今为止通过不同的计算方法进行的不同领先研究的广泛汇编。我们将这些方法分为两个主要类别:以及它们与小分子的相互作用,以及实验研究和计算工作之间的协同作用。在这篇综述中,我们主要关注计算机模拟方法,并提供了迄今为止通过不同的计算方法进行的不同领先研究的广泛汇编。我们将这些方法分为两个主要类别:a)可以进行长时间分子动力学模拟和动力学信息相应分析的经典方法,以及(b)可以进行显式模拟的量子方法(半经验,量子力学/分子力学和密度泛函理论方法)系统电子结构的基本原理,但通常不能用于长时间尺度的分子动力学模拟,因此无法对相关过程进行更静态的描述。

更新日期:2021-05-07
down
wechat
bug