当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconfigurable Surfaces Using Fringing Electric Fields from Nanostructured Electrodes in Nematic Liquid Crystals
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2021-05-07 , DOI: 10.1002/adts.202100058
Rami Ghannam 1 , Yuanjie Xia 1 , Dezhi Shen 2 , F. Anibal Fernandez 2 , Hadi Heidari 1 , Vellasaimy A. L. Roy 1
Affiliation  

Liquid crystals with a varying phase profile enable reconfigurable and intelligent devices to be designed, which are capable of manipulating incident electromagnetic fields in display, telecommunications as well as wearable applications. The active control of defects in these devices is becoming more important, especially since the electrodes used to manipulate them are shrinking to nanometer length scales. In this paper, a simple subwavelength, 1D, interdigitated metal electrode structure that can be reconfigured using nematic liquid crystals aligned in the homeotropic, planar, and hybrid methods are demonstrated. Accurate electro-optic modeling of the directors and the defects are shown, which are induced by the fringing electric fields. Applied voltages result in liquid crystal reorientation near the bottom surface, such that defects are induced between the electrodes. The height of the electrodes does not affect the lateral position of these defects. Rather, this can be achieved by increasing the biasing voltage on the top electrode, which also leads to greater splay-bend in the bulk of the material. These results therefore aim to generalize the control of defects in complex anisotropic nematic liquid crystals using simple interdigitated structures for a range of reconfigurable intelligent surface applications.

中文翻译:

使用来自向列液晶中纳米结构电极的边缘电场的可重构表面

具有不同相位分布的液晶能够设计出可重新配置的智能设备,这些设备能够在显示器、电信和可穿戴应用中控制入射电磁场。对这些设备中的缺陷进行主动控制变得越来越重要,特别是因为用于操纵它们的电极正在缩小到纳米长度尺度。在本文中,演示了一种简单的亚波长、一维、叉指金属电极结构,该结构可以使用以垂直、平面和混合方法排列的向列液晶进行重新配置。显示了由边缘电场引起的导向器和缺陷的精确电光建模。施加的电压导致底面附近的液晶重新定向,从而在电极之间引起缺陷。电极的高度不影响这些缺陷的横向位置。相反,这可以通过增加顶部电极上的偏置电压来实现,这也会导致材料主体中更大的张开弯曲。因此,这些结果旨在推广使用简单的叉指结构对复杂各向异性向列液晶中的缺陷进行控制,以用于一系列可重构智能表面应用。
更新日期:2021-07-14
down
wechat
bug