当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria
Chemosphere ( IF 8.1 ) Pub Date : 2021-05-05 , DOI: 10.1016/j.chemosphere.2021.130803
Neetu Talreja 1 , Shagufta Afreen 2 , Mohammad Ashfaq 3 , Divya Chauhan 4 , Adriana C Mera 5 , C A Rodríguez 5 , R V Mangalaraja 6
Affiliation  

Tetracycline (TC) is one of the most commonly used broad-spectrum antibiotics to treat the bacterial infection. TC antibiotics enter into the environment because of partial metabolism in the humans and animals, thereby increasing the environmental toxicity. Therefore, it is highly needed to treat TC antibiotics from the water system. In this aspect, the present work focus on the synthesis of Fe and Zn (bimetal) incorporated with different concentrations into the bismuth-oxy-iodide (Fe/Zn–BiOI) based photocatalyst materials. The synthesized Fe/Zn–BiOI was tested against photocatalytic degradation of TC antibiotics and bacteria. The band gap value of the synthesized Fe/Zn–BiOI was calculated ~2.19 eV. The incorporation of the Fe and Zn metals within the BiOI aided advantages that increased the reactive sites, oxygen defects, photon adsorption, production of hydroxyl radicals, and decrease the recombination rate, thereby high photo-degradation ability. The maximum degradation of ~83% was observed using Fe/Zn–BiOI-1-1 at 10 mg/L of TC antibiotics concentration. Moreover, ~98% of degradation was observed at pH~10 of the TC antibiotics. The photo-activity against bacteria of the Fe/Zn–BiOI was also determined. The data suggested that the synthesized Fe/Zn–BiOI based photocatalyst materials effectively inhibited the bacterial strains. Therefore, Fe/Zn–BiOI based photocatalyst materials might be promising materials that effectively degrade TC antibiotics as well as bacteria.



中文翻译:

掺杂双金属(Fe / Zn)的BiOI光催化剂:四环素和细菌的有效光降解

四环素(TC)是治疗细菌感染最常用的广谱抗生素之一。TC抗生素由于人和动物的部分代谢而进入环境,从而增加了环境毒性。因此,迫切需要处理水系统中的TC抗生素。在这一方面,本工作着重于以不同浓度掺入碘化铋铋(Fe / Zn-BiOI)基光催化剂材料中的铁和锌(双金属)的合成。测试了合成的Fe / Zn-BiOI对TC抗生素和细菌的光催化降解。合成的Fe / Zn-BiOI的带隙值约为2.19 eV。在BiOI中掺入铁和锌金属有助于增加反应位点,氧缺陷,光子吸附,产生羟基自由基,并降低重组率,从而具有较高的光降解能力。在10 mg / L的TC抗生素浓度下,使用Fe / Zn–BiOI-1-1观察到约83%的最大降解。此外,在TC抗生素的pH值为10时,观察到〜98%的降解。还确定了Fe / Zn-BiOI对细菌的光活性。数据表明,合成的基于Fe / Zn-BiOI的光催化剂材料可有效抑制细菌菌株。因此,基于Fe / Zn-BiOI的光催化剂材料可能是有效降解TC抗生素和细菌的有前途的材料。此外,在TC抗生素的pH值为10时,观察到〜98%的降解。还确定了Fe / Zn-BiOI对细菌的光活性。数据表明,合成的基于Fe / Zn-BiOI的光催化剂材料可有效抑制细菌菌株。因此,基于Fe / Zn-BiOI的光催化剂材料可能是有效降解TC抗生素和细菌的有前途的材料。此外,在TC抗生素的pH值为10时,观察到〜98%的降解。还确定了Fe / Zn-BiOI对细菌的光活性。数据表明,合成的基于Fe / Zn-BiOI的光催化剂材料可有效抑制细菌菌株。因此,基于Fe / Zn-BiOI的光催化剂材料可能是有效降解TC抗生素和细菌的有前途的材料。

更新日期:2021-05-08
down
wechat
bug