当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light-Induced Atomic Desorption in Microfabricated Vapor Cells for Demonstrating Quantum Optical Applications
Physical Review Applied ( IF 4.6 ) Pub Date : 2021-05-06 , DOI: 10.1103/physrevapplied.15.l051001
Eliran Talker , Pankaj Arora , Roy Zektzer , Yoel Sebbag , Mark Dikopltsev , Uriel Levy

In recent years, we have observed substantial efforts towards the miniaturization of atomic vapor cells from the centimeter scale down to the millimeter scale and even lower, to enable efficient and compact light-vapor interactions with a higher degree of integration, lower heating power, and other prominent advantages. However, miniaturization typically comes at the cost of a reduced optical path, effectively reducing the contrast of the optical signal. To overcome this obstacle, we perform light-induced atomic desorption (LIAD) on a microfabricated buffer-gas-filled vapor cell and significantly increase the contrast of the optical signal. LIAD is a nonthermal process, whereby atoms absorbed at a surface are released under nonresonant-light illumination. A compact on-chip atomic optical isolator at room temperature is presented using the LIAD technique in our millimeter-sized fabricated vapor cell. The use of LIAD is found to be an excellent option to realize a narrow-line-width optical isolator at room temperature. Furthermore, the LIAD technique is utilized to demonstrate dichroic atomic vapor laser lock (DAVLL) in the same microfabricated vapor cell without heating. Taking advantage of the LIAD-enhanced DAVLL signal in the miniaturized vapor cell, we stabilize a 780-nm laser with a precision better than 400 kHz, without the need for heating and with no frequency modulation. Eliminating the need for heating may pave the way for remote applications, where the cell may be far away from the lasers, in scenarios where electrical currents and electrical contacts are undesired and difficult to implement.

中文翻译:

微型蒸汽电池中的光诱导原子解吸,证明了量子光学的应用

近年来,我们已经看到了从原子尺度到毫米尺度甚至更低的原子蒸气电池微型化的巨大努力,以实现高效,紧凑的光-蒸气相互作用,并具有更高的集成度,更低的加热功率,以及其他突出优势。然而,小型化通常是以减少光路为代价的,从而有效地降低了光信号的对比度。为了克服这一障碍,我们在微制造的充满缓冲气体的蒸汽电池上进行了光诱导原子解吸(LIAD),并显着提高了光信号的对比度。LIAD是一个非热过程,通过该过程在非共振光照射下释放在表面吸收的原子。使用LIAD技术在我们毫米级的预制蒸汽电池中提供了一种紧凑的,室温下的片上原子光学隔离器。发现LIAD是在室温下实现窄线宽光隔离器的绝佳选择。此外,利用LIAD技术可在不加热的情况下,在同一微型蒸汽电池中演示二色性原子蒸汽激光锁定(DAVLL)。利用微型蒸气室中LIAD增强的DAVLL信号,我们可以稳定精度超过400 kHz的780 nm激光器,而无需加热且无需进行频率调制。消除加热需求可以为远程应用铺平道路,因为在这种情况下,电池可能离激光较远,
更新日期:2021-05-06
down
wechat
bug