当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear seismic analysis of a train-tunnel-soil system and running safety assessment of metro vehicles
Soil Dynamics and Earthquake Engineering ( IF 4 ) Pub Date : 2021-05-06 , DOI: 10.1016/j.soildyn.2021.106772
Junjie Li , Yunfeng Lou , Xun Yang , Xianlong Jin

Since earthquakes would pose a serious threat to the safety of underground railway tunnels and subway trains, the seismic analysis of the subway tunnel and the metro train is essential for earthquake-resistant design and construction. This presented study aims to investigate the transient response of a train-tunnel-soil coupled system under various load conditions, and assess running safety of the moving train. Firstly, a simulation model of the train-tunnel-soil system was established, considering interactions between soil and tunnel, rail and train. Secondly, the numerical approaches employed in this paper were verified, and the tunnel-soil model was validated with the available test data. Finally, the nonlinear seismic response of the train-tunnel-soil system is investigated, and running safety indices of the subway vehicle are evaluated. Moreover, the effect of train speed and earthquake intensity on the running safety of the metro train is assessed. The numerical results reveal that compared to the moving-train load, the effect of earthquake action on the dynamic response of the subway tunnel is more prominent, resulting in a significant increase of the wheel-rail force and acceleration of the railway vehicle. Both earthquake loads and train speed have an impact on running safety indices, while the earthquake intensity has a more significant effect on the safety index of the metro vehicle. Moreover, it is worth noticing that with respect to the designed operational speed of 90 km/h for Nanjing Metro Line 10, the ability of the metro train to withstand earthquake excitation is no more than a maximum acceleration of 0.2 g.



中文翻译:

列车-隧道-土壤系统的非线性地震分析及地铁车辆的运行安全性评估

由于地震会严重威胁地下铁路隧道和地铁列车的安全,因此对地铁隧道和地铁列车进行地震分析对于抗震设计和施工至关重要。本研究旨在研究列车隧道-土-土耦合系统在各种载荷条件下的瞬态响应,并评估行进中的列车的运行安全性。首先,考虑了土与隧道,铁路和火车之间的相互作用,建立了火车-隧道-土壤系统的仿真模型。其次,对本文采用的数值方法进行了验证,并利用可获得的测试数据对隧道-土壤模型进行了验证。最后,研究了列车-隧道-土壤系统的非线性地震响应,并对地铁车辆的行驶安全性指标进行了评估。此外,还评估了列车速度和地震烈度对地铁列车运行安全性的影响。数值结果表明,与动载相比,地震作用对地铁隧道动力响应的影响更为突出,轮轨力和铁路车辆的加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。评估了列车速度和地震烈度对地铁列车运行安全性的影响。数值结果表明,与动载相比,地震作用对地铁隧道动力响应的影响更为突出,导致轮轨力和铁路车辆加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。评估了列车速度和地震烈度对地铁列车运行安全性的影响。数值结果表明,与动载相比,地震作用对地铁隧道动力响应的影响更为突出,导致轮轨力和铁路车辆加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。数值结果表明,与动载相比,地震作用对地铁隧道动力响应的影响更为突出,导致轮轨力和铁路车辆加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。数值结果表明,与动载相比,地震作用对地铁隧道动力响应的影响更为突出,导致轮轨力和铁路车辆加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。导致轮轨力和铁路车辆的加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。导致轮轨力和铁路车辆的加速度显着增加。地震载荷和列车速度都对运行安全指数产生影响,而地震烈度对地铁车辆的安全指数影响更大。此外,值得注意的是,就南京地铁10号线的设计时速90 km / h而言,地铁列车承受地震激励的能力不超过0.2 g的最大加速度。

更新日期:2021-05-06
down
wechat
bug