当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations
Applied Soft Computing ( IF 8.7 ) Pub Date : 2021-05-06 , DOI: 10.1016/j.asoc.2021.107481
Orcan Alpar , Ondrej Krejcar , Rafael Dolezal

Distribution-based imaging is a promising methodology mainly to differentiate suspicious regions from surrounding tissues by applying a distribution to the images vertically or horizontally, ideally in both directions. The methodology is very useful for contouring and highlighting desired regions even under near-zero contrast conditions; it also leads to flexible segmentation of the lesions by parametric kernels and provides robust results when supported by solid post-segmentation protocols. Given these benefits, what we propose in this research is a specialized fuzzy 2-means algorithm enhanced by parametric distribution-based imaging framework to offer novel solutions for multiple-sclerosis (MS) identification and segmentation from flair MRI images. The interchangeable distributions employed in this research are Rayleigh, Weibull, Gamma, Exponential and Chi-square, which all are mathematically transmuted from Nakagami distribution. The Nakagami m-parameter is defining the shape of the distributions unless a special parameter exists; while the highlighted areas are segmented by fuzzy 2-means. All parameters are optimized using a set of MICCAI 2016 MS lesion segmentation challenge taken by Siemens Verio 3T scanner and 0.8245 dice score is achieved by Nakagami-Gamma. However, when the optimized framework is tested by other 4 sets with same resolution and size properties, the highest average dice score 0.7113 is obtained by Nakagami-Rayleigh; while Nakagami-Gamma transmutation is resulted in 0.7112 dice score with significantly better sensitivity.



中文翻译:

基于分布的成像技术,使用由Nakagami变换提供支持的专用模糊2均值,对多发性硬化症病变进行分割

基于分布的成像是一种有前途的方法,主要是通过在垂直方向或水平方向(最好是在两个方向上)对图像应用分布来区分可疑区域与周围组织。该方法对于轮廓和突出显示所需区域非常有用,即使在接近零的对比度条件下也是如此。它还可以通过参数内核灵活地对病变进行分割,并在得到可靠的后分割方案的支持时提供可靠的结果。考虑到这些好处,我们在这项研究中提出的是一种特殊的模糊2均值算法,该算法通过基于参数分布的成像框架进行了增强,可以为从多发性MRI图像识别和分割多发性硬化(MS)提供新颖的解决方案。本研究中使用的可互换分布是Rayleigh,Weibull,Gamma,从Nakagami分布数学上将其都进行了指数变换和卡方变换。除非存在特殊参数,否则中上m参数将定义分布的形状。而突出显示的区域则用模糊2均值分割。所有参数均使用西门子Verio 3T扫描仪进行的一组MICCAI 2016 MS病灶分割挑战进行了优化,Nakagami-Gamma获得了0.8245的骰子得分。然而,当优化的框架由具有相同分辨率和大小属性的其他4组测试时,中上瑞利获得的最高平均骰子得分为0.7113。而Nakagami-Gamma mut变可产生0.7112的骰子得分,且灵敏度显着提高。除非存在特殊参数,否则中上m参数将定义分布的形状。而突出显示的区域则用模糊2均值分割。所有参数均使用西门子Verio 3T扫描仪进行的一组MICCAI 2016 MS病灶分割挑战进行了优化,Nakagami-Gamma获得了0.8245的骰子得分。然而,当优化的框架由具有相同分辨率和大小属性的其他4组测试时,中上瑞利获得的最高平均骰子得分为0.7113。而Nakagami-Gamma mut变可产生0.7112的骰子得分,且灵敏度显着提高。除非存在特殊参数,否则中上m参数将定义分布的形状。而突出显示的区域则用模糊2均值分割。所有参数均使用西门子Verio 3T扫描仪进行的一组MICCAI 2016 MS病灶分割挑战进行了优化,Nakagami-Gamma获得了0.8245的骰子得分。然而,当优化的框架由具有相同分辨率和大小属性的其他4组测试时,中上瑞利获得的最高平均骰子得分为0.7113。而Nakagami-Gamma mut变可产生0.7112的骰子得分,且灵敏度显着提高。所有参数均使用西门子Verio 3T扫描仪进行的一组MICCAI 2016 MS病灶分割挑战进行了优化,Nakagami-Gamma获得了0.8245的骰子得分。然而,当优化的框架由具有相同分辨率和大小属性的其他4组测试时,中上瑞利获得的最高平均骰子得分为0.7113。而Nakagami-Gamma mut变可产生0.7112的骰子得分,且灵敏度显着提高。所有参数均使用西门子Verio 3T扫描仪进行的一组MICCAI 2016 MS病灶分割挑战进行了优化,Nakagami-Gamma获得了0.8245的骰子得分。然而,当优化的框架由具有相同分辨率和大小属性的其他4组测试时,中上瑞利获得的最高平均骰子得分为0.7113。而Nakagami-Gamma mut变可产生0.7112的骰子得分,且灵敏度显着提高。

更新日期:2021-05-06
down
wechat
bug