当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-layer controller with state-constraint: Vehicle lateral stability control based on fuzzy logic
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-05-05 , DOI: 10.1177/09544070211014297
Neng Wan 1 , Guangping Zeng 1 , Chunguang Zhang 1 , Dingqi Pan 1 , Songtao Cai 1
Affiliation  

This paper deals with a new state-constrained control (SCC) system of vehicle, which includes a multi-layer controller, in order to ensure the vehicle’s lateral stability and steering performance under complex environment. In this system, a new constraint control strategy with input and state constraints is applied to calculate the steady-state yaw moment. It ensures the vehicle lateral stability by tracking the desired yaw rate value and limiting the allowable range of the side slip. Through the linkage of the three-layer controller, the tire load is optimized and achieve minimal vehicle velocity reduction. The seven-degree-of-freedom (7-DOF) simulation model was established and simulated in MATLAB to evaluate the effect of the proposed controller. Through the analysis of the simulation results, compared with the traditional ESC and integrated control, it not only solves the problem of obvious velocity reduction, but also solves the problem of high cost and high hardware requirements in integrated control. The simulation results show that designed control system has better performance of path tracking and driving state, which is closer to the desired value. Through hardware-in-the-loop (HIL) practical experiments in two typical driving conditions, the effectiveness of the above proposed control system is further verified, which can improve the lateral stability and maneuverability of the vehicle.



中文翻译:

具有状态约束的多层控制器:基于模糊逻辑的车辆横向稳定性控制

本文研究了一种新的车辆状态约束控制(SCC)系统,该系统包括多层控制器,以确保复杂环境下车辆的横向稳定性和转向性能。在该系统中,采用了具有输入和状态约束的新约束控制策略来计算稳态横摆力矩。它通过跟踪所需的横摆率值并限制侧滑的允许范围来确保车辆的横向稳定性。通过三层控制器的链接,轮胎负载得以优化,并实现了最小的车速降低。建立了七自由度(7-DOF)仿真模型,并在MATLAB中对其进行了仿真,以评估所提出的控制器的效果。通过对仿真结果的分析,与传统的电调和集成控制相比,它不仅解决了速度明显降低的问题,而且解决了集成控制中成本高,硬件要求高的问题。仿真结果表明,所设计的控制系统具有较好的路径跟踪和行驶状态性能,更接近期望值。通过在两种典型驾驶条件下的半实物(HIL)实际实验,进一步验证了上述控制系统的有效性,可以提高车辆的横向稳定性和可操纵性。仿真结果表明,所设计的控制系统具有较好的路径跟踪和行驶状态性能,更接近期望值。通过在两种典型驾驶条件下的半实物(HIL)实际实验,进一步验证了上述控制系统的有效性,可以提高车辆的横向稳定性和可操纵性。仿真结果表明,所设计的控制系统具有较好的路径跟踪和行驶状态性能,更接近期望值。通过在两种典型驾驶条件下的半实物(HIL)实际实验,进一步验证了上述控制系统的有效性,可以提高车辆的横向稳定性和可操纵性。

更新日期:2021-05-05
down
wechat
bug