当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics
Advanced Science ( IF 14.3 ) Pub Date : 2021-05-03 , DOI: 10.1002/advs.202003090
David Panáček 1, 2 , Lucie Hochvaldová 2, 3 , Aristides Bakandritsos 3, 4 , Tomáš Malina 2, 3 , Michal Langer 1, 2 , Jan Belza 2, 3 , Jana Martincová 2, 3 , Renata Večeřová 5 , Petr Lazar 3 , Kateřina Poláková 1 , Jan Kolařík 3 , Lucie Válková 3 , Milan Kolář 5 , Michal Otyepka 1, 3 , Aleš Panáček 2, 3 , Radek Zbořil 1, 4
Affiliation  

The ability of bacteria to develop resistance to antibiotics is threatening one of the pillars of modern medicine. It was recently understood that bacteria can develop resistance even to silver nanoparticles by starting to produce flagellin, a protein which induces their aggregation and deactivation. This study shows that silver covalently bound to cyanographene (GCN/Ag) kills silver-nanoparticle-resistant bacteria at concentrations 30 times lower than silver nanoparticles, a challenge which has been so far unmet. Tested also against multidrug resistant strains, the antibacterial activity of GCN/Ag is systematically found as potent as that of free ionic silver or 10 nm colloidal silver nanoparticles. Owing to the strong and multiple dative bonds between the nitrile groups of cyanographene and silver, as theory and experiments confirm, there is marginal silver ion leaching, even after six months of storage, and thus very high cytocompatibility to human cells. Molecular dynamics simulations suggest strong interaction of GCN/Ag with the bacterial membrane, and as corroborated by experiments, the antibacterial activity does not rely on the release of silver nanoparticles or ions. Endowed with these properties, GCN/Ag shows that rigid supports selectively and densely functionalized with potent silver-binding ligands, such as cyanographene, may open new avenues against microbial resistance.

中文翻译:

银与氰基烯共价结合克服了细菌对银纳米颗粒和抗生素的耐药性

细菌对抗生素产生耐药性的能力正在威胁着现代医学的支柱之一。最近人们了解到,细菌甚至可以通过开始产生鞭毛蛋白(一种诱导细菌聚集和失活的蛋白质)来对银纳米颗粒产生耐药性。这项研究表明,与氰基石墨烯 (GCN/Ag) 共价结合的银可以在比银纳米颗粒低 30 倍的浓度下杀死对银纳米颗粒耐药的细菌,这是迄今为止尚未解决的挑战。还针对多重耐药菌株进行了测试,系统地发现 GCN/Ag 的抗菌活性与游离离子银或 10 nm 胶体银纳米颗粒的抗菌活性一样有效。正如理论和实验所证实的那样,由于氰基石墨烯和银之间的腈基团之间存在牢固且多重的配位键,即使在储存六个月后,也有少量银离子浸出,因此与人体细胞具有非常高的细胞相容性。分子动力学模拟表明GCN/Ag与细菌膜有很强的相互作用,并且经实验证实,抗菌活性并不依赖于银纳米颗粒或离子的释放。凭借这些特性,GCN/Ag 表明,用有效的银结合配体(例如氰基石墨烯)选择性和密集地功能化的刚性载体可能会开辟对抗微生物耐药性的新途径。
更新日期:2021-06-24
down
wechat
bug