当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
T-VLAD: Temporal Vector of Locally Aggregated Descriptor for Multiview Human Action Recognition
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2021-05-04 , DOI: 10.1016/j.patrec.2021.04.023
Hajra Binte Naeem, Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A. Velastin

Robust view-invariant human action recognition (HAR) requires effective representation of its temporal structure in multi-view videos. This study explores a view-invariant action representation based on convolutional features. Action representation over long video segments is computationally expensive, whereas features in short video segments limit the temporal coverage locally. Previous methods are based on complex multi-stream deep convolutional feature maps extracted over short segments. To cope with this issue, a novel framework is proposed based on a temporal vector of locally aggregated descriptors (T-VLAD). T-VLAD encodes long term temporal structure of the video employing single stream convolutional features over short segments. A standard VLAD vector size is a multiple of its feature codebook size (256 is normally recommended). VLAD is modified to incorporate time-order information of segments, where the T-VLAD vector size is a multiple of its smaller time-order codebook size. Previous methods have not been extensively validated for view-variation. Results are validated in a challenging setup, where one view is used for testing and the remaining views are used for training. State-of-the-art results have been obtained on three multi-view datasets with fixed cameras, IXMAS, MuHAVi and MCAD. Also, the proposed encoding approach T-VLAD works equally well on a dynamic background dataset, UCF101.



中文翻译:

T-VLAD:用于多视图人类动作识别的局部聚集描述符的时间向量

稳健的视图不变人类动作识别(HAR)需要在多视图视频中有效表示其时间结构。这项研究探索了基于卷积特征的视图不变动作表示。长视频段上的动作表示在计算上很昂贵,而短视频段上的功能会局部限制时间范围。先前的方法基于在短片段上提取的复杂多流深度卷积特征图。为了解决这个问题,提出了一种基于局部聚集描述符的时间向量(T-VLAD)的新颖框架。T-VLAD使用短片段上的单流卷积特征对视频的长期时间结构进行编码。标准VLAD向量大小是其功能码本大小的倍数(通常建议使用256)。修改了VLAD以合并段的时间顺序信息,其中T-VLAD向量大小是其较小的时间顺序码本大小的倍数。先前的方法尚未针对视图变化进行广泛验证。在具有挑战性的设置中验证结果,其中一个视图用于测试,其余视图用于训练。使用固定相机IXMAS,MuHAVi和MCAD在三个多视图数据集上获得了最新的结果。同样,提出的编码方法T-VLAD在动态背景数据集UCF101上也能很好地工作。其中一个视图用于测试,其余视图用于训练。使用固定相机IXMAS,MuHAVi和MCAD在三个多视图数据集上获得了最新的结果。同样,提出的编码方法T-VLAD在动态背景数据集UCF101上也能很好地工作。其中一个视图用于测试,其余视图用于训练。使用固定相机IXMAS,MuHAVi和MCAD在三个多视图数据集上获得了最新的结果。同样,提出的编码方法T-VLAD在动态背景数据集UCF101上也能很好地工作。

更新日期:2021-05-04
全部期刊列表>>
欢迎新作者ACS
聚焦环境污染物
专攻离子通道生理学研究
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
苏州大学
江南大学
四川大学
灵长脑研究中心
毛凌玲
南开大学陈瑶
朱如意
中科院
南开大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug