当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep learning model for predicting daily IGS zenith tropospheric delays in West Africa using TensorFlow and Keras
Advances in Space Research ( IF 2.8 ) Pub Date : 2021-05-04 , DOI: 10.1016/j.asr.2021.04.039
Samuel Osah , Akwasi A. Acheampong , Collins Fosu , Isaac Dadzie

Accessibility and precise modelling of tropospheric delay play a significant role in the precise Global Navigation satellite system (GNSS) positioning applications as well as meteorological studies and weather forecasting. However, if in the event that a GNSS Continuously Operating Reference Station (CORS) is inaccessible due to power outages, poor internet connectivity, equipment failure, and firmware issues, gaps are created in the data archive, and the quality of the tropospheric delay estimation is degraded. Over the years, several modelling approaches and methodologies have been proposed towards the precise estimation of tropospheric delay, owing to the spatiotemporal variability of water vapour content in the atmosphere. This study employs Deep learning (DL) approach with TensorFlow and Keras to develop a predictive model (DLztd) for predicting daily IGS final ZTDs over four selected IGS stations in West Africa. Daily surface meteorological parameters (Pressure (P), Temperature (T), and Water vapour partial pressure (e)), as well as daily ZTD and stations’ coordinates (latitude, and ellipsoidal height) obtained from the site-wise VMF3-ZTD products for the period 2015–2018, were used as input variables to train and test the model, while data from 2019 were used to evaluate the predictive performance of the developed model. Statistical performance indicators such as Mean Bias (MB), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), coefficient of determination (R2), Nash-Sutcliffe coefficient of Efficiency (NSE), and the fraction of prediction within a Factor of Two (FAC2) were employed to determine the degree of agreement between the DLztd model predictions and IGS final ZTD data. The results from the various analyses indicate exceptionally good prediction capability of the DLztd model with average MB, RMSE, MAPE, R2, NSE and FAC2 of 3.25 mm, 9.62 mm, 0.30%, 0.959, 0.947, and 1.00 respectively. This demonstrates that the DLztd model provides a remarkable alternative for improving the availability of the ZTD data over the IGS stations under study should the stations' data be inaccessible or unavailable.



中文翻译:

使用 TensorFlow 和 Keras 预测西非每日 IGS 天顶对流层延迟的深度学习模型

对流层延迟的可访问性和精确建模在精确的全球导航卫星系统 (GNSS) 定位应用以及气象研究和天气预报中发挥着重要作用。但是,如果 GNSS 连续运行参考站 (CORS) 因停电、互联网连接不良、设备故障和固件问题而无法访问,则会在数据存档和对流层延迟估计的质量中产生间隙退化了。多年来,由于大气中水蒸气含量的时空变化,已经提出了几种建模方法和方法来精确估计对流层延迟。本研究采用 TensorFlow 和 Keras 的深度学习 (DL) 方法来开发预测模型 (DLztd),用于预测西非四个选定 IGS 站的每日 IGS 最终 ZTD。每日地面气象参数(压力 (P)、温度 (T) 和水汽分压 (e)),以及每日 ZTD 和从站点 VMF3-ZTD 获得的站点坐标(纬度和椭球体高度) 2015-2018 年期间的产品被用作输入变量来训练和测试模型,而 2019 年的数据被用来评估开发模型的预测性能。统计性能指标,如平均偏差 (MB)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、决定系数 (R 每日地面气象参数(压力 (P)、温度 (T) 和水汽分压 (e)),以及每日 ZTD 和从站点 VMF3-ZTD 获得的站点坐标(纬度和椭球体高度) 2015-2018 年期间的产品被用作输入变量来训练和测试模型,而 2019 年的数据被用来评估开发模型的预测性能。统计性能指标,如平均偏差 (MB)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、决定系数 (R 每日地面气象参数(压力 (P)、温度 (T) 和水汽分压 (e)),以及每日 ZTD 和从站点 VMF3-ZTD 获得的站点坐标(纬度和椭球体高度) 2015-2018 年期间的产品被用作输入变量来训练和测试模型,而 2019 年的数据被用来评估开发模型的预测性能。统计性能指标,如平均偏差 (MB)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、决定系数 (R 用作输入变量来训练和测试模型,而 2019 年的数据则用于评估开发模型的预测性能。统计性能指标,如平均偏差 (MB)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、决定系数 (R 用作输入变量来训练和测试模型,而 2019 年的数据则用于评估开发模型的预测性能。统计性能指标,如平均偏差 (MB)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、决定系数 (R2 )、纳什-萨特克利夫效率系数 (NSE) 和因子二内的预测分数 (FAC2) 用于确定 DLztd 模型预测与 IGS 最终 ZTD 数据之间的一致程度。各种分析的结果表明 DLztd 模型的预测能力非常好,平均 MB、RMSE、MAPE、R 2、NSE 和 FAC2 分别为 3.25 mm、9.62 mm、0.30%、0.959、0.947 和 1.00。这表明,如果站的数据不可访问或不可用,DLztd 模型提供了一个显着的替代方案,用于提高所研究的 IGS 站的 ZTD 数据的可用性。

更新日期:2021-06-15
down
wechat
bug