当前位置: X-MOL 学术Simul. Model. Pract. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on cutting resistance characteristic of bucket wheel excavator using DEM and DOE methods
Simulation Modelling Practice and Theory ( IF 3.5 ) Pub Date : 2021-05-04 , DOI: 10.1016/j.simpat.2021.102339
Yong-Zheng Jiang , Gui-Wen Liao , Sheng-Shuo Zhu , Ya-Fan Hu

As an important design parameter for bucket wheel excavator, the cutting resistance of the bucket wheel shows significant dynamic character and changes drastically under different work conditions. Therefore, this paper analyzes the trend of cutting resistance through a combination of discrete element method (DEM) and design of experiment (DOE). Firstly, the three-dimensional dynamic simulation of tool-particle cutting process is established using DEM. The accuracy of the DEM model is verified by the cutting resistance test. Based on DEM results, the cutting resistance, different flow regions and the contact normal stress distribution on the inside of the bucket were analyzed. Secondly, DOE method was used to analyze the changing regularity of the cutting resistance. With cutting speed, cohesion and particle size as variables, a total of 15 orthogonal working conditions were designed and simulated through DEM. Then, the response surface (RS) method is used to fit the original simulation results. The RS fitted results show that: (1) overall, the cutting resistance decreases as the particle size and cutting speed increase. A larger particle size will reduce the load weight of a single bucket by reducing the particle volume fraction, while a higher cutting speed will cause more particles to splash out of the bucket; (2) depending on different working conditions, the increasing of cohesion is able to increase the cutting resistance by increasing the cohesive force between particles, or reduce the cutting resistance through “big aggregates effect” which lowers the particle volume fraction.



中文翻译:

用DEM和DOE方法研究斗轮挖掘机的切削阻力特性。

作为斗轮挖掘机的重要设计参数,斗轮的切削阻力表现出显着的动态特性,并且在不同的工作条件下会急剧变化。因此,本文通过结合离散元方法(DEM)和实验设计(DOE)来分析切削阻力的趋势。首先,利用DEM建立了刀具颗粒切削过程的三维动态仿真。DEM模型的准确性通过切削阻力测试得到验证。基于DEM结果,分析了铲斗内部的切削阻力,不同的流动区域和接触法向应力分布。其次,采用DOE方法分析了切削阻力的变化规律。以切割速度,内聚力和粒径为变量,通过DEM设计并仿真了15种正交工作条件。然后,使用响应面(RS)方法来拟合原始仿真结果。RS拟合结果表明:(1)总体而言,切削阻力随着粒度和切削速度的增加而降低。较大的颗粒尺寸会通过减小颗粒体积分数来降低单个铲斗的负载重量,而更高的切割速度会导致更多的颗粒从铲斗中飞溅出来;(2)根据不同的工作条件,内聚力的增加可以通过增加颗粒之间的内聚力来增加抗切割性,或者通过降低颗粒体积分数的“大聚集效应”来降低抗切割性。响应面(RS)方法用于拟合原始模拟结果。RS拟合结果表明:(1)总体而言,切削阻力随着粒度和切削速度的增加而降低。较大的颗粒尺寸会通过减小颗粒体积分数来降低单个铲斗的负载重量,而更高的切割速度会导致更多的颗粒从铲斗中飞溅出来;(2)根据不同的工作条件,内聚力的增加可以通过增加颗粒之间的内聚力来增加抗切割性,或者通过降低颗粒体积分数的“大聚集效应”来降低抗切割性。响应面(RS)方法用于拟合原始模拟结果。RS拟合结果表明:(1)总体而言,切削阻力随着粒度和切削速度的增加而降低。较大的颗粒尺寸会通过减小颗粒体积分数来降低单个铲斗的负载重量,而更高的切割速度会导致更多的颗粒从铲斗中飞溅出来;(2)根据不同的工作条件,内聚力的增加可以通过增加颗粒之间的内聚力来增加抗切割性,或者通过降低颗粒体积分数的“大聚集效应”来降低抗切割性。切削阻力随着粒度和切削速度的增加而降低。较大的颗粒尺寸会通过减小颗粒体积分数来降低单个铲斗的负载重量,而更高的切割速度会导致更多的颗粒从铲斗中飞溅出来;(2)根据不同的工作条件,内聚力的增加可以通过增加颗粒之间的内聚力来增加抗切割性,或者通过降低颗粒体积分数的“大聚集效应”来降低抗切割性。切削阻力随着粒度和切削速度的增加而降低。较大的颗粒尺寸会通过减小颗粒体积分数来降低单个铲斗的负载重量,而更高的切割速度会导致更多的颗粒从铲斗中飞溅出来;(2)根据不同的工作条件,内聚力的增加可以通过增加颗粒之间的内聚力来增加抗切割性,或者通过降低颗粒体积分数的“大聚集效应”来降低抗切割性。

更新日期:2021-05-11
down
wechat
bug