当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.5 ) Pub Date : 2021-05-03 , DOI: 10.1016/j.jtice.2021.04.037
Diab Khalafallah , Jizhong Miao , Mingjia Zhi , Zhanglian Hong

Pseudocapacitive materials with multiple oxidation/reduction modes can deliver an improved specific capacity and energy density owing to their reversible Faradic redox reactions. Also, ingeniously integrating a conductive carbon material and a pseudocapacitive transition metal to develop reactive compounds with a high conductivity is a plausible solution to make up for the deficiencies of individual oxides and hydroxides. In this study, we rationally design graphene quantum dots decorated CuO nanoframework (GQDs/CuO) for high-performance supercapacitors. Specifically, the Cu-MOF template as the precursor with a confined porosity and skeleton as well as Cu2+ as the central atoms is converted into CuO by in-situ growth and annealing. Afterward, the negatively charged GQDs can adsorb and uniformly anchor on the CuO surface via electrostatic and coordination interactions by a subsequent hydrothermal treatment. The deposited GQDs with carboxyl functional groups not only increase the surface area for electrochemical reactions but also modulate the conductivity and reduce interfacial resistance by allowing effective paths for electron transportation, leading to better redox reaction kinetics. As a supercapacitor cathode material, the integrated GQDs/CuO electrode affords a high specific capacitance of 729 F g−1 at a current density of 1 A g–1 and good-rate capability together with an improved cyclic performance (82.2% retention after 3000 cycles). Moreover, the as-fabricated asymmetric supercapacitor (ASC) with a large output voltage window of 1.5 V realizes an energy density of 32.2 W h kg–1 at power density of 748.9 W kg–1 with an enhanced cyclability over 8000 cycles, benefiting from the enriched electrochemical active sites and intimated connection between Cu species and doped GQDs. Thus, the adopted strategy may demonstrate an effective opportunity to explore high-performance electrode materials for energy harvesting.



中文翻译:

构建石墨烯量子点锚定 CuO 用于高性能混合超级电容器

由于其可逆的法拉第氧化还原反应,具有多种氧化/还原模式的赝电容材料可以提供更高的比容量和能量密度。此外,巧妙地整合导电碳材料和赝电容过渡金属以开发具有高电导率的反应性化合物是弥补单个氧化物和氢氧化物不足的合理解决方案。在这项研究中,我们合理地设计了用于高性能超级电容器的石墨烯量子点装饰的 CuO 纳米框架(GQDs/CuO)。具体而言,Cu-MOF模板作为具有受限孔隙率和骨架的前驱体以及作为中心原子的Cu 2+通过原位转化为CuO生长和退火。之后,带负电荷的 GQD 可以通过随后的水热处理通过静电和配位相互作用吸附并均匀地锚定在 CuO 表面。具有羧基官能团的沉积 GQD 不仅增加了电化学反应的表面积,而且通过允许有效的电子传输路径来调节电导率并降低界面电阻,从而导致更好的氧化还原反应动力学。作为超级电容器阴极材料,集成的 GQDs/CuO 电极在 1 A g –1的电流密度下提供了 729 F g -1的高比电容和良好的倍率能力以及改进的循环性能(3000 次循环后保留率为 82.2%)。此外,具有 1.5 V 大输出电压窗口的制造的非对称超级电容器 (ASC)在 748.9 W kg –1 的功率密度下实现了 32.2 W h kg –1的能量密度,并具有超过 8000 次循环的增强循环能力,受益于富集的电化学活性位点和 Cu 物种与掺杂 GQD 之间的密切联系。因此,所采用的策略可能是探索用于能量收集的高性能电极材料的有效机会。

更新日期:2021-06-03
down
wechat
bug