当前位置: X-MOL 学术Phys. Rev. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissipative state transfer and Maxwell's demon in single quantum trajectories: Excitation transfer between two noninteracting qubits via unbalanced dissipation rates
Physical Review A ( IF 2.6 ) Pub Date : 2021-05-03 , DOI: 10.1103/physreva.103.052201
Fabrizio Minganti , Vincenzo Macrì , Alessio Settineri , Salvatore Savasta , Franco Nori

We introduce a protocol to transfer excitations between two noninteracting qubits via purely dissipative processes (i.e., in the Lindblad master equation there is no coherent interaction between the qubits). The fundamental ingredients are the presence of collective (i.e., nonlocal) dissipation and unbalanced local dissipation rates (the qubits dissipate at different rates). The resulting quantum trajectories show that the measurement back-action changes the system wave function and induces a passage of the excitation from one qubit to the other. While similar phenomena have been witnessed for a non-Markovian environment, here the dissipative quantum state transfer is induced by an update of the observer knowledge of the wave function in the presence of a Markovian (memoryless) environment—this is a single quantum trajectory effect. That is, a postselection of a jumpless trajectory allows a transfer even for a non-Markovian environment where no quantum jumps have taken place. Beyond single quantum trajectories and postselection, such an effect can be observed by histogramming the ratio of quantum jumps at different times along several realizations. By investigating the effect of the temperature in the presence of unbalanced local dissipation, we demonstrate that, if appropriately switched on and off, the collective dissipator can act as a Maxwell's demon. These effects are a generalized measure equivalent to the standard projective measure description of quantum teleportation and Maxwell's demon. They can be witnessed in state-of-the-art setups given the extreme experimental control in, e.g., superconducting qubits, Rydberg atoms, and nitrogen-vacancy (NV) centers.

中文翻译:

单量子轨迹中的耗散状态转移和麦克斯韦恶魔:通过不平衡耗散率在两个非相互作用量子位之间进行激发转移

我们引入了一种协议,通过纯耗散过程在两个非相互作用的量子位之间转移激发(即,在Lindblad主方程中,量子位之间没有相干的相互作用)。基本要素是集体(即非局部)耗散和不平衡的局部耗散率(量子比特以不同的速率耗散)的存在。由此产生的量子轨迹表明,测量背向作用改变了系统波函数,并引起了激发从一个量子位到另一个量子位的通过。尽管在非马尔可夫环境中也观察到了类似的现象,但是在马尔可夫(无记忆)环境中,观察者对波函数的更新会导致耗散量子态转移,这是单个量子轨迹效应。那是,即使没有非量子跃迁发生在非马尔可夫环境中,无跳变轨迹的事后选择也可以进行转移。除了单个量子轨迹和后选择,还可以通过对几种实现方式在不同时间的量子跃变比率进行直方图观察,观察到这种效果。通过研究在不平衡局部耗散的情况下温度的影响,我们证明了,如果适当地打开和关闭,集体耗散器可以充当麦克斯韦的恶魔。这些效应是一种广义量度,等同于量子隐形传态和麦克斯韦恶魔的标准射影量度描述。在极端的实验控制下,例如超导量子位,里德堡原子和氮空位(NV)中心,可以在最先进的设置中见证它们。
更新日期:2021-05-03
down
wechat
bug