当前位置: X-MOL 学术Publ. Astron. Soc. Jpn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Particle–particle particle–tree code for planetary system formation with individual cut-off method: GPLUM
Publications of the Astronomical Society of Japan ( IF 2.2 ) Pub Date : 2021-04-09 , DOI: 10.1093/pasj/psab028
Yota Ishigaki 1, 2 , Junko Kominami 3 , Junichiro Makino 4, 5 , Masaki Fujimoto 2 , Masaki Iwasawa 6
Affiliation  

In a standard theory of the formation of the planets in our Solar System, terrestrial planets and cores of gas giants are formed through accretion of kilometer-sized objects (planetesimals) in a protoplanetary disk. Gravitational N-body simulations of a disk system made up of numerous planetesimals are the most direct way to study the accretion process. However, the use of N-body simulations has been limited to idealized models (e.g., perfect accretion) and/or narrow spatial ranges in the radial direction, due to the limited number of simulation runs and particles available. We have developed new N-body simulation code equipped with a particle–particle particle–tree (P3T) scheme for studying the planetary system formation process: GPLUM. For each particle, GPLUM uses the fourth-order Hermite scheme to calculate gravitational interactions with particles within cut-off radii and the Barnes–Hut tree scheme for particles outside the cut-off radii. In existing implementations, P3T schemes use the same cut-off radius for all particles, making a simulation become slower when the mass range of the planetesimal population becomes wider. We have solved this problem by allowing each particle to have an appropriate cut-off radius depending on its mass, its distance from the central star, and the local velocity dispersion of planetesimals. In addition to achieving a significant speed-up, we have also improved the scalability of the code to reach a good strong-scaling performance up to 1024 cores in the case of N = 106.

中文翻译:

具有单独截止方法的行星系统形成的粒子-粒子-粒子-树代码:GPLUM

在我们太阳系中行星形成的标准理论中,类地行星和气态巨行星的核心是通过原行星盘中千米大小的物体(小行星)的吸积形成的。由众多小行星组成的盘系统的引力 N 体模拟是研究吸积过程的最直接方法。然而,由于模拟运行和可用粒子的数量有限,N 体模拟的使用仅限于理想化模型(例如,完美吸积)和/或径向上的狭窄空间范围。我们开发了配备粒子-粒子-粒子-树 (P3T) 方案的新 N 体模拟代码,用于研究行星系统形成过程:GPLUM。对于每个粒子,GPLUM 使用四阶 Hermite 方案计算与截止半径内的粒子的引力相互作用,并使用 Barnes-Hut 树方案计算截止半径外的粒子。在现有的实现中,P3T 方案对所有粒子使用相同的截止半径,当小行星种群的质量范围变宽时,模拟会变慢。我们已经解决了这个问题,方法是允许每个粒子根据其质量、与中心恒星的距离以及小行星的局部速度分散具有适当的截止半径。除了实现显着的加速之外,我们还改进了代码的可扩展性,在 N = 106 的情况下达到了高达 1024 个内核的良好的强扩展性能。
更新日期:2021-04-09
down
wechat
bug