当前位置: X-MOL 学术Opt. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methods to achieve fast, accurate, and mechanically robust optical breadboard alignment
Optical Engineering ( IF 1.1 ) Pub Date : 2021-03-01 , DOI: 10.1117/1.oe.60.5.051213
Martin Grenier 1 , Nichola Desnoyers 1 , Frederic Lamontagne 1 , Bruno Leduc 1 , Mathieu Legros 1 , Simon Paradis 1
Affiliation  

Typical laboratory optical systems use commercially off-the-shelf components in which emphasis is oriented toward ease of assembly and a wide range of adjustability. However, these mounts often require individual alignments that, when each degree of adjustability is cumulated in a complex optical system, can be inefficient and time consuming. Furthermore, most of these optomechanical mounts lack the mechanical robustness required to maintain operational performances out of the laboratory environment. An optomechanical assembly method based on passively aligning design features is proposed to simplify breadboard level optical systems, to improve alignment accuracy and maintaining operational pointing stability. Given the recent improvements in lens passive centering techniques, it seemed worth exploring methods to reduce alignment time and improve the mechanical robustness of laboratory setups. Recent studies show that a typical optical lens centering of <1 arc min with respect to its mount can be achieved using patented auto centering and edge contact mounting technologies. To achieve similar position accuracy between multiple lenses on a portable breadboard, lens mounts should be designed and built with proper reference surfaces and a system should easily reference one mount with respect to the other. The use of reference spheres and dedicated optomechanical mounts is employed to leverage the standard threaded holes of laboratory breadboards and achieve precise lens mount positioning. A series of optomechanical mounts incorporating these techniques are therefore tested. Position accuracy and repeatability are measured mechanically with a coordinate measuring machine and optically with the active monitoring of a laser beam centroid position. Measured position accuracy at the optomechanical mount level is <50 μm with a repeatability of less than 5 μm per interface. The optomechanical mounts robustness is tested within typical storage temperature range of −46 ° C to 63°C and at vibrations levels exceeding typical shipping conditions. Measured optical pointing stability of a simple optical system after environmental testing was found to be under 25 μm. This method should be a promising solution to bridge the design technological gap between the early prototyping and the production phases.

中文翻译:

实现快速,准确和机械坚固的光学面包板对准的方法

典型的实验室光学系统使用商用组件,其中重点是易于组装和广泛的可调节性。然而,这些安装座经常需要单独的对准,当在复杂的光学系统中累积每种程度的可调节性时,这些对准可能是效率低下且耗时的。此外,大多数这些光机械支架缺乏在实验室环境之外维持操作性能所需的机械坚固性。提出了一种基于无源对准设计特征的光机组装方法,以简化面包板级光学系统,提高对准精度并保持操作指向稳定性。鉴于镜头被动定心技术的最新改进,似乎值得探索减少对准时间并提高实验室设置的机械强度的方法。最近的研究表明,使用获得专利的自动对中和边缘接触式安装技术,可以实现典型的光学透镜相对于其安装座的中心定位小于1弧分。为了在便携式面包板上的多个镜头之间获得相似的位置精度,应设计和制造具有适当基准面的镜头座,并且系统应轻松地将一个座相对于另一个座进行参考。通过使用参考球和专用的光机械安装座来利用实验室面包板的标准螺纹孔,并实现精确的透镜安装座定位。因此,测试了一系列采用这些技术的光机械安装座。位置精度和可重复性通过坐标测量机进行机械测量,并通过主动监测激光束质心位置进行光学测量。在光机械安装水平上测得的位置精度为<50μm,每个接口的重复性小于5μm。在−46°C至63°C的典型存储温度范围内以及在超出典型运输条件的振动水平下,测试了光机械安装座的坚固性。经环境测试后,简单光学系统的测得光学指向稳定性低于25μm。这种方法应该是弥合早期原型设计和生产阶段之间的设计技术差距的有前途的解决方案。在光机械安装水平上测得的位置精度为<50μm,每个接口的重复性小于5μm。在−46°C至63°C的典型存储温度范围内以及在超出典型运输条件的振动水平下,测试了光机械安装座的坚固性。经环境测试后,简单光学系统的测得光学指向稳定性低于25μm。这种方法应该是弥合早期原型设计和生产阶段之间的设计技术差距的有前途的解决方案。在光机械安装水平上测得的位置精度为<50μm,每个接口的重复性小于5μm。在−46°C至63°C的典型存储温度范围内以及在超出典型运输条件的振动水平下,测试了光机械安装座的坚固性。经环境测试后,简单光学系统的测得光学指向稳定性低于25μm。这种方法应该是弥合早期原型设计和生产阶段之间的设计技术差距的有前途的解决方案。经环境测试后,简单光学系统的测得光学指向稳定性低于25μm。这种方法应该是弥合早期原型设计和生产阶段之间的设计技术差距的有前途的解决方案。经环境测试后,简单光学系统的测得光学指向稳定性低于25μm。这种方法应该是弥合早期原型设计和生产阶段之间的设计技术差距的有前途的解决方案。
更新日期:2021-05-02
down
wechat
bug