当前位置: X-MOL 学术Commun. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Speed of a Random Front for Stochastic Reaction–Diffusion Equations with Strong Noise
Communications in Mathematical Physics ( IF 2.2 ) Pub Date : 2021-05-01 , DOI: 10.1007/s00220-021-04084-0
Carl Mueller , Leonid Mytnik , Lenya Ryzhik

We study the asymptotic speed of a random front for solutions \(u_t(x)\) to stochastic reaction–diffusion equations of the form

$$\begin{aligned} \partial _tu=\frac{1}{2}\partial _x^2u+f(u)+\sigma \sqrt{u(1-u)}{\dot{W}}(t,x),~t\ge 0,~x\in {\mathbb {R}}, \end{aligned}$$

arising in population genetics. Here, f is a continuous function with \(f(0)=f(1)=0\), and such that \(|f(u)|\le K|u(1-u)|^\gamma \) with \(\gamma \ge 1/2\), and \({\dot{W}}(t,x)\) is a space-time Gaussian white noise. We assume that the initial condition \(u_0(x)\) satisfies \(0\le u_0(x)\le 1\) for all \(x\in {\mathbb {R}}\), \(u_0(x)=1\) for \(x<L_0\) and \( u_0(x)=0\) for \(x>R_0\). We show that when \(\sigma >0\), for each \(t>0\) there exist \(R(u_t)<+\infty \) and \(L(u_t)<-\infty \) such that \(u_t(x)=0\) for \(x>R(u_t)\) and \(u_t(x)=1\) for \(x<L(u_t)\) even if f is not Lipschitz. We also show that for all \(\sigma >0\) there exists a finite deterministic speed \(V(\sigma )\in {\mathbb {R}}\) so that \(R(u_t)/t\rightarrow V(\sigma )\) as \(t\rightarrow +\infty \), almost surely. This is in dramatic contrast with the deterministic case \(\sigma =0\) for nonlinearities of the type \(f(u)=u^m(1-u)\) with \(0<m<1\) when solutions converge to 1 uniformly on \({\mathbb {R}}\) as \(t\rightarrow +\infty \). Finally, we prove that when \(\gamma >1/2\) there exists \(c_f\in {\mathbb {R}}\), so that \(\sigma ^2V(\sigma )\rightarrow c_f\) as \(\sigma \rightarrow +\infty \) and give a characterization of \(c_f\). The last result complements a lower bound obtained by Conlon and Doering (J Stat Phys 120(3–4):421–477, 2005) for the special case of \(f(u)=u(1-u)\) where a duality argument is available.



中文翻译:

具有强噪声的随机反应扩散方程随机前沿的速度

我们研究形式为随机反应-扩散方程的解\(u_t(x)\)的随机前沿的渐近速度

$$ \ begin {aligned} \ partial _tu = \ frac {1} {2} \ partial _x ^ 2u + f(u)+ \ sigma \ sqrt {u(1-u)} {\ dot {W}}( t,x),〜t \ ge 0,〜x \ in {\ mathbb {R}},\ end {aligned} $$

在人口遗传学中产生。在这里,f是具有\(f(0)= f(1)= 0 \)的连续函数,并且使得 \(| f(u)| \ le K | u(1-u)| ^ \ gamma \ ),带有 \(\ gamma \ ge 1/2 \)\({\ dot {W}}(t,x)\)是时空高斯白噪声。我们假设初始条件\ {u_0(x)\)满足所有\ {x \ in {\ mathbb {R}} \)中的\(0 \ le u_0(x)\ le 1 \)\(u_0( X)= 1 \)为 \(X <L_0 \)\(U_0(X)= 0 \)为 \(X> R_0 \) 。我们证明当\(\ sigma> 0 \)时,对于每个\(t> 0 \)都存在 \(R(u_t)<+ \ infty \)和 \(L(u_t)< - \ infty \) ,使得\(u_t(X)= 0 \)\(X> R(u_t)\)\ (f <L(u_t)\)的(u_t(x)= 1 \), 即使f不是Lipschitz。我们还表明,对于所有\(\西格玛> 0 \)存在有限的确定性速度 \(V(\西格马)\在{\ mathbb {R}} \) ,使得 \(R(u_t)/ T \ RIGHTARROW V(\ sigma)\)\(t \ rightarrow + \ infty \),几乎可以肯定。这与类型为\(f(u)= u ^ m(1-u)\)且类型为\(0 <m <1 \)的非线性的确定性情况\(\ sigma = 0 \)形成了鲜明的对比当解收敛到1上均匀地\({\ mathbb {R}} \)作为\(T \ RIGHTARROW + \ infty \) 。最后,我们证明当\(\ gamma> 1/2 \)时存在\(c_f \在{\ mathbb {R}} \)中,因此 \(\ sigma ^ 2V(\ sigma)\ rightarrow c_f \)为 \(\ sigma \ rightarrow + \ infty \)并给出\(c_f \)的特征。最后的结果的补充的下限由Conlon的和多林(j统计物理学120(3-4):421-477,2005)获得的特殊情况\(F(U)= U(1-U)\) ,其中对偶参数可用。

更新日期:2021-05-02
down
wechat
bug