当前位置: X-MOL 学术Cold Reg. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling shallow ground temperatures around hot buried pipelines in cold regions
Cold Regions Science and Technology ( IF 3.8 ) Pub Date : 2021-05-01 , DOI: 10.1016/j.coldregions.2021.103295
Ranjeet M. Nagare , Aaron A. Mohammed , Young-Jin Park , Robert A. Schincariol

Transmitting fluids at high operating temperatures through buried pipelines is common in the oil and gas industry. Pipelines are insulated to maintain the fluid temperature within an operating threshold and reduce heat loss to the subsurface. In cold regions, damaged insulation around pipelines can raise ground temperatures by tens of degrees and keep ground frost free during the winter. This can lead to environmental and geotechnical issues, operational inefficiencies and, in extreme cases, pipeline failure. When supported by field data, modeling of coupled heat and water transfer in the subsurface can be used to understand baseline and disturbed ground temperatures and to design thermal remediation plans. However, simulating ground temperatures under the influence of snow cover, freeze-thaw conditions as well as a shallow heat source is challenging. This case study presents a simple and effective approach using a thermal boundary layer and a time-varying Dirichlet boundary condition to simulate these conditions with coupled vadose zone and groundwater models. The approach was validated by comparing the model results to a temperature survey along a boiler feed water pipeline corridor in northern Alberta, Canada. Model results were used to better understand the influence of high-temperature pipelines on subsurface thermal regimes, to help design a ground temperature monitoring program, and successfully identify and remediate pipeline insulation damage.



中文翻译:

在寒冷地区模拟地下热埋管道周围的浅层地面温度

在较高的工作温度下,通过地下管道传输流体是石油和天然气行业中的常见现象。管道应进行绝缘处理,以将流体温度保持在运行阈值内,并减少对地下的热损失。在寒冷地区,管道周围的绝缘层受损会导致地面温度升高数十度,并在冬季使地面无霜冻。这可能导致环境和岩土问题,运营效率低下,在极端情况下还可能导致管道故障。当得到现场数据的支持时,地下热与水耦合耦合的模型可用于了解基线和受干扰的地面温度并设计热修复计划。但是,模拟积雪影响下的地面温度,冻融条件以及浅热源都具有挑战性。本案例研究提出了一种简单有效的方法,即使用热边界层和时变的Dirichlet边界条件,通过渗流带和地下水模型耦合来模拟这些条件。通过将模型结果与加拿大艾伯塔省北部锅炉给水管道走廊沿线的温度调查进行比较,验证了该方法的有效性。模型结果被用来更好地理解高温管道对地下热态的影响,帮助设计地面温度监测程序,并成功地识别和修复管道的绝缘破坏。本案例研究提出了一种简单有效的方法,即使用热边界层和时变的Dirichlet边界条件,通过渗流带和地下水模型耦合来模拟这些条件。通过将模型结果与加拿大艾伯塔省北部锅炉给水管道走廊沿线的温度调查进行比较,验证了该方法的有效性。模型结果被用来更好地理解高温管道对地下热态的影响,帮助设计地面温度监测程序,并成功地识别和修复管道的绝缘破坏。本案例研究提出了一种简单有效的方法,即使用热边界层和时变的Dirichlet边界条件,通过渗流带和地下水模型耦合来模拟这些条件。通过将模型结果与加拿大艾伯塔省北部锅炉给水管道走廊沿线的温度调查进行比较,验证了该方法的有效性。模型结果被用来更好地理解高温管道对地下热态的影响,帮助设计地面温度监测程序,并成功地识别和修复管道的绝缘破坏。

更新日期:2021-05-05
down
wechat
bug